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Chapter 1

INTRODUCTION

1.1 Motivation

The study of mixing enhancement of high speed flows has received consider-

able attention in the recent years in relation to the current effort to develop a

single-stage-to-orbit ( SSTO ) hypersonic vehicle. Such hypersonic aircraft could

be an alternative to low-orbit rocket launchers. Table 1.1 presents a comparison be-

tween a typical aircraft and a conventional rocket launcher. This table reveals that

the oxygen represents most of the takeoff weight of rockets. Moreover, the large

Table 1.1 Typical takeoff weight fraction breakdowns

from Heiser et al. 1 p.16

Takeoff Weight Fraction Aircraft Rocket

Payload 0.15 0.04

Empty 0.55 0.07

Fuel 0.30 0.24

Oxygen 0.00 0.65

oxygen fraction comes at the expense of the payload and the empty weight, which
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includes structure, tankage, power, controls, propulsion system, and life support sys-

tems. The alternative is a vehicle which relies primarily on airbreathing propulsion,

and operates as an ordinary aircraft. The weight saved by using air would be used, as

in ordinary aircraft, to increase payload as well as to make the aircraft smaller. An-

other important characteristic of a such vehicle is the reusability and the possibility

to include life saving systems into the aircraft. Furthermore, aircrafts need no special

( and very expensive ) launching facilities existing airfields may be used, allowing

quick reaction and turnaround. In order to further reduce the takeoff weight, cryo-

genic hydrogen would be the fuel of choice, because of its high combustion specific

energy, and because its potential to provide vitally needed cooling by its very low

storage temperature and high specific heat.

The main propulsion system of a trans-atmospheric vehicle will be based on ram-

jet / scramjet propulsion. Ramjets are the engines of choice for flight in the Mach

number range 3 6. In a ramjet engine the air flow is decelerated to subsonic speed,

the combustion takes place in subsonic flow, after which the hot flow is accelerated

to supersonic speed and finally exhausts into the atmosphere. When the flight Mach

number exceeds about six, it is no longer advantageous to decelerate the flow to sub-

sonic speed. The adverse consequences include pressure too high for the combustor

stru cture, excessive wall heat transfer rates, high total pressure losses caused by strong

shocks, and thermal energy losses to chemical dissociation. To minimize these prob-

lems, the oncoming air is not decelerated to subsonic speed, resulting in supersonic

flow in the combustor. This engine is known as the supersonic-combustion-ramjet,

or in short, a scramjet. Typical design requirements point to combustor flow Mach

numbers between two and eight 2. Consequently, the time available for the mixing

of the hydrogen with the air is greatly reduced compared to a conventional subsonic
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combustor. For example, a typical aircraft flying at Mach 15, may have the air in

the combustor at Mach 5 with a velocity of about 4000 m/s. Given the fact that

the combustion chamber can be only a few meters long, the residence time of the air

within the combustor is of the order of 1 ms. Thus, the mixing between the air and

the hydrogen must proceed very rapidly.

An additional concern over the mixing is caused by the very low growth rates of the

shear-layers, which form between the fuel and the air. Experiments have shown that

the growth rate and the turbulence levels in a supersonic mixing layer are significantly

reduced as compared with the subsonic mixing layer 3,4. Hence, the mixing caused

by the shear of the flow is less than that in a conventional subsonic combustor. The

problem is aggravated by the requirement that a major component of the injectant

flow vector be directed parallel to the freestream to alleviate losses, and to derive

as much thrust from the momentum of the fuel jet as possible 2. All of these facts

generate the need for mechanisms to augment the mixing process.

In conclusion, following takeoff, the vehicle must climb and accelerate rapidly to a

speed where the principal propulsion system, a scramjet, takes over. Through much

of its flight envelope, the aircraft will be propelled by the scramjet engines relying on

hydrogen-air combustion. The overall performance of the vehicle will be very sensitive

to the scramjet engine operation. Clearly, providing rapid and efficient mixing in

the combustor is essential to a successful scramjet engine design, and therefore to a

successful aircraft. However, such mixing can be achieved only by devising mixing

enhancement techniques, which is the primary motivation for the present study of

supersonic mixing.
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1.2 Fuel-Air Mixing

This section presents a literature survey of supersonic mixing and of mixing

enhancement techniques.

1.2.1 Basic Definitions

Gas-phase chemical reactions occur by the exchange of atoms between molecules

as a result of molecular collisions. Consequently, fuel and air must be mixed to

stoichiometric proportions at the molecular level before combustion can take place.

Two fluids can be mixed to a very fine macroscopic scale, but still not to a molecular

level. Such a mixture is called a bulk mixture, or a macromixture. A mixture which is

homogeneous at the molecular level is called a micromixture. In steady state mixing

the initial stirring or macromixing is called near-field mixing, and the subsequent

molecular diffusion or micromixing is called far-field mixing. The sequence of events

that characterizes all mixing processes is as follows : first, input of mechanical work

( usually drawn from the main flow ) that causes macromixing, followed by molecular

diffusion ( micromixing ).

1.2.2 Compressible Shear Layers

The compressible free shear layer is a fundamental flow type concerning fuel-air

mixing in parallel streams, that is central to the flow in a scramjet combustor. In

recent years compressible turbulent mixing flows have been studied in great detail

in an attempt to understand and control the physics governing them. Although

much has been learned from these studies, attempts to significantly increase the

mixing of two streams have been largely unsuccessful. Two adjacent compressible
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fluid streams of different supersonic speeds mix much-more slowly at their interface

than the same fluids at subsonic speeds with the same velocity and density ratios.

The most elementary feature that distinguishes a supersonic flow from a subsonic

one is that in the supersonic case a disturbance does not propagate upstream and

remains confined within a Mach cone, while in the subsonic case a disturbance is

felt throughout the flowfield. Given the limited region of influence of a supersonic

disturbance, it may be expected that a supersonic shear layer is more stable, therefore

mixes more slowly, than a subsonic one. Density differences between the streams were

originally suggested as the cause of this mixing decrease, but the work of Brown and

Roshko 5 showed this is not the case. They found that large changes in the density

ratio across the mixing layer had a relatively small effect on the spreading angle of

the mixing layer, and concluded that the strong effects are due to compressibility

effects. This effect was conclusively shown by Papamoschou and Roshko 3. They

correlated their shear layer spreading rate data, and results of earlier studies, using

the convective Mach number (Mc) concept introduced by Bogdanoff 6. Since large

structures are present in the compressible mixing layer, a frame of reference moving

with the convective speed Uc of these structures was suggested by Papamoschou and

Roshko 3. The convective Mach numbers then are defined as follows

u -uc
Me, - (1.1)

al

Uc - U2
- (1,2)

g2

where the subscripts 1 and 2 stand for the first and second stream respectively. In

this coordinate system, there is a saddle point between the structures shown in an

idealized view in the work by Papamoschou and Roshko 3. It is a common stagnation

point for both streams, where the pressure must balance. Assuming that the flow
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comesto rest at the stagnationpoint isentropically,hencewithout shockwavelosses,

Papamoschouand Roshko3 obtained the relation

-- _i - i 3'2 -- _2 - i

(1+ 7'---_1M_1)2 : (1+ @M_) (1.3)

Since Uc is algebraically implicit in Eq. (1.3), it must be found iteratively, or by

using a root-finder software on a computer. However, for Mcl and Me2 not very large

and 3'1 and 3'2 not greatly different, the Eq. (1.3) can be approximated by

1

= Me, (1.4)

Using Eq. (1.4), together with the convective Mach number definitions the convective

velocity can be calculated as

3'2 al U2Uc = 3"°'%2U1+ 0.5
",/o'%2+ 3"°'%1

(1.5)

Since the pressures of both streams are equal at the stagnation point, one can obtain

Uc 1+_ (_°'5
\Pl /

-- - (e___ o.5 (1.6)
U1 1-1- \ol/

For 3'1 = 3'2, Uv can be expressed in the form of a speed-of-sound weighted average

as

a2U1 -t- al U2
Uc = (1.7)

a2 -{- al

It should be pointed out that Eqs. (1.6) and (1.7) are not restricted to compress-

ible flow and are actually more accurate for incompressible flow. Papamoschou and

Roshko give the following relation for the incompressible shear layer growth rate based

on visual thickness 3

(o2"/0.5 ]
[l-u_] [1 + \_j J

5_,_com,. = 0.17 (1.8)
1 + u_z (_o.5

U1 \ pl /
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where 6' = d6/dx. Then the normalized growth rate of the compressible shear layer

may be expressed in the form

(_tcompres.

func(Mc) (1.9)
_ncomp.

where "func" is a universal function valid over a wide range of U2/U1 and p2/pl.

Hence the convective Mach number correlates the effect of compressibility on the

compressible shear layer growth rate normalized by its incompressible counterpart

at the same freestream velocity and density ratios. This normalized growth rate is

drastically reduced with increasing Mcl, until Me1 reaches about 0.8 . Beyond this

point, the growth rate stays fairly constant at a value approximately one fifth of the

incompressible one. However, there are studies that have documented large structure

convection velocities that are substantially different from those predicted using the

convective Mach number analysis, particularly at higher convective Mach numbers 7,8.

Due to apparent problems associated with this parameter, the relative Mach number,

is also used as a compressibility parameter9,10. The relative Mach number is defined

as

2AU
Mn = (1.10)

al + a2

where AU stands for the freestreams velocity difference U_ - U2.

Inthe context of convective Mach number, Ragab and Wu ll numerically calcu-

lated the linear spatial instability of a two-dimensional compressible laminar mixing

layer, and investigated the effects of temperature and velocity ratios, Reynolds num-

ber, and convective Mach number. Their results substantiate the convective Mach

number as a parameter_which correlates the compressibility effects on the spread-

ing rates of the mixing layers. Sandham and Reynolds 12 extended the numerical

simulations to three dimensions and showed that the structures become increasingly
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three dimensional as the convective Mach number is increased, becoming dominant

for Mc > 0.6. Fourguette et al. 13 found experimentally that in an axisymmetric
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supersonic jet the structures in the mixing layer are three dimensional and are ro-

tating while traveling with a velocity higher than the one predicted based on the
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convective Mach number. Nixon et _l. 14 suggested, based on a theoretical study,

that the main cause of the decrease in mixing as Mc increases is that an increasing

amount of the energy in the two streams goes into compression of the fluid during

entrainment rather than being used to produce pure mixing (increase of mass within

the shear layer). They theorized that the only way to increase mixing is to accentu-

ate streamwise vorticity. McIntyre and Settles 8 have found experimentally that the

axisymmetric turbulent mixing layers possess large scale poorly-organized turbulent

ii_i i_ii_i_

structures. These structures are always inclined toward the faster of the two mixing

streams. For Mc > 1 these structures are supersonic with respect to only one of the

two mixing streams. Spectrum analysis of the velocity fluctuations exhibited a broad-

band peak which shifted to lower frequencies with downstream distance, indicating

growth of the structures with downstream location.

Although the convective Mach number correlates growth-rate data fairly well,

questions remained as to the accuracy of the isentropic model when shocks form on

the structure. Papamoschou 7 pointed out that the isentropic model for the turbulent

large scale structures fails when the flow becomes highly compressible. Dimotakis 15

proposed a scheme which assumes that for low convective Mach numbers, shocks will

form in one of the two shear layer free streams. He pointed out that the available

data indicate a convection velocity Uc that is closer to/]1 (the high speed stream

velocity) when the low speed stream is subsonic, and closer to /]2 (the low speed

stream velocity) when both streams are supersonic, resulting in an asymmetric en-



trainment pattern. Zemanl6,17 suggested that growth inhibition in mixing layers is a

consequence of additional (anomalous) dissipation due to the presence of fluctuating

dilatation, which is proportional to the square of fluctuating divergence. This so-called

dilatation dissipation occurs in regions where the flow becomes locally supersonic and

form shock-like structures, or turbulent shocklets. The dilatation dissipation affects

the turbulence so that the turbulent fluctuations and also the layer growth rate are

determined by the local sonic velocity rather than by the velocity difference AU, thus

explaining the growth rate leveling for Mc > 1.5 . Zeman also pointed out that if

the faster stream is denser (as in the case of a freestream of air and hydrogen fuel ),

the average spatial growth will be lower than in the case of equal densities streams.

A shear-layer drift toward the stream with the lower density was also observed. It

has been found by Zeman 17 that the shear layer reaches a self-similar state when the

shear layer relative Maeh number exceeds a value of about three.

Elliot et al. 4,18,19 showed that both the growth rate and the turbulence quanti-

ties decrease with increasing convective Mach number. Further experimental results

from Laser Doppler Velocimetry (LDV) investigations by Goebel and Dutton 9 showed

that the transverse turbulence intensities and normalized kinematic Reynolds stresses

decrease with increasing relative Mach number, whereas the streamwise turbulence

intensities and kinematic Reynolds stresses remain relatively constant. Gruber et

al. 10 experimentally corroborated the Goebel and Dutton results, implying that the

primary effect of compressibility on the mixing layer is to suppress transverse velocity

fluctuations. The result concerning the streamwise turbulence is somewhat different

from that obtained by Elliot et at.19 who found a reduction in streamwise turbulence

similar to the transverse component. This decrease in the turbulent quantities reduces

the small scale mixing, consequently the molecular mixing decreases. Hall et al. 20
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experimentally observed a reduction in molecularly mixed fluid inside the shear layer,

in addition to the reduction in the overall growth rate. Specifically, they measured

about 31% of molecularly mixed fluid at Mc = 0.96, compared to 49% in incompress-

ible flow. A contradictory result was experimentally observed by Clemens et al. 21.

Their results suggest that in a moderately compressible layer, a larger fraction of the

fluid ( 15% to 25% more ) exists in a mixed state as compared to the incompressible

layer. This controversy shows that the molecular mixing in compressible shear lay-

ers is still an unresolved issue. On one hand the increased three dimensionality of

the shear layer suggests that an increase in the molecular mixing is to be expected.

On the other hand, suppression of the vortex pairing process tends to reduce the

molecular mixing.

In conclusion, the compressible shear layers suffer from a significantly reduction

in the growth rate and in the turbulence quantities as well as an increase in the

stability, as compared to the incompressible shear layers with the same velocities and

densities ratios. Therefore the mixing of the two streams is reduced. Various mixing

augmentation techniques have been proposed to enhance mixing in shear layers. All

of them have in common the basic objective of increasing the mixing by extracting

a fraction of the main flow energy, and applying it into the shear layer. The various

methods will be discussed in the next subsection.

1.2.3 Mixing Augmentation Methods

To date, several techniques have been proposed for mixing enhancement. The

methods may be sorted into three principal classes :

1. Methods which provide for conditioning of the flow field into which the fuel is

injected by varying the injector/combustor wall geometry. These techniques are



also known as "Contoured wall injectors".
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2. Preconditioning of the fuel through various turbulence and vorticity generating

devices within the injectors themselves, including the use of non-circular nozzles.

3. Direct interaction between the injectant jet and freestream flows.

The following survey does not intend to cover all the work done in the field of mixing

enhancement, but is intended to point-out different methods which have demonstrated

improved supersonic mixing. Additional details and references can be found in the

works cited here.

1.2.3.1 Contoured wall injectors

This technique involves shaping the combustor wall geometry or the external

injector geometry, thus conditioning the flow field into which the fuel is injected.

One type of injector from this class employs a ramp for generating streamwise

vorticity. This type was studied extensively at NASA Langley Research Center ,

Hampton, VA, USA, by Northam et al. 22,23, Riggins et al. 24-26, and elsewhere by

Davis et al. 27, Hartfield et al. 28, and Donohue et al. 29,30. Ramp injectors generate

streamwise vorticity when high pressure air compressed by the top of the ramp spills

over the ramp corners to the lower pressure region between the ramps. The effect

is enhanced if the ramp side walls are swept so that the region between the ramps

diverges in the streamwise direction. Air is accelerated and expanded in this region

to a lower pressure pulling more air over the corners. The injectant jet is highly

deformed by those vortices, and it is almost split and lifted into two completely

separate counter-rotating cores. In the case of swept side-wall ramp, the mixing is

augmented in comparison with the straight wall ramp and requires less length. But
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the swept-ramp incurs higher total pressure loss than i_he unswept ramp.

Another injector type which belongs to this class is the one which augments mixing

by baroclinic vortex generation. It is designed so that the jet intersects an oblique

shock. Vorticity is formed at any point where the gradients of pressure and density

are non-parallel. Thus, intersection of a shock (pressure gradient) with a non-parallel

fuel/air density gradient will cause a baroclinic generation of vorticity 31'32-34. The

rate of change of vorticity, a_, is derived by taking the curl of the momentum equation

and can be written in the following form :

Da_ 1

Dt - p 2(VpxVp)+(_'V)u-_(V'u)+uV2_÷(Vu)xV2u (1.11)

The first term on the RHS is called the "baroclinic torqne" which exists when the

pressure and density gradients are not parallel. When a shock wave intersects a jet

2!

of different density to the surrounding flow, such as a hydrogen fuel jet in air, the

pressure gradients across the shock interact with the density gradient between the

hydrogen jet and the air and generate vorticity. The studies showed an increase in the

interface area between the air and the fuel resulting in an increase in the mixing. The

jet was lifted-off the wall and complete separation from the wall occured streamwise

within one injector height. The performance of these injectors is strongly affected

by the boundary layer thickness which acts to modify the effective wall geometry.

The impact of the boundary layer varies with the spacing in the injector array and

upstream conditions. Widely spaced arrays were less influenced by the boundary layer

thickness. Another parameter which affects the mixing enhancement is the injectant

to free stream static pressure ratio. Pressure ratio near unity ( matched pressure

injection) yields strong jet penetration and good mixing, compared with pressure

ratios greater than unity (under expanded jets) 32. However, it is not clear whether

the gain in mixing enhancement due to the vorticity generated by baroclinic torque is
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sufficient to justify the additional loss of total pressure caused by the oblique shock,

through which the entire airstream must pass.

1.2.3.2 Preconditioning the fuel

This method preconditions the fuel flow through various devices within the in-

jectors themselves. Several techniques were employed including non-circular nozzle

geometries. The elliptic and rectangular jets had a better mixing performance, and

displayed greater spreading rate relative to the circular jets, especially in the minor

axis plane, which was attributed to the higher pressure fluctuations measured in this

plane. The higher spread was accompanied by faster decay of the mean velocity along

the jet axis and amplification of turbulent small-scale fluctuations 35. For noncircular

nozzles with corners, e.g. triangles, rectangles or squares, a significant amplification

of turbulent small scale fluctuations was observed due to axial vortices formed in the

corners of the nozzle 36.

Other techniques precondition the fuel through various turbulence and vorticity

generating devices. Schadow et al. 37 used a circular nozzle with several downstream

facing steps upstream of its exit plane. Cold flow tests showed turbulence levels

increased up to six times the initial turbulence level relative to a circular nozzle.

Samimy et al. 38,39 and Zaman et al. 40 used vortex generators in the form of tabs

projecting into the flow at the exit plane of the nozzle. The jet cross section was

distorted. As a result of this distortion the entrainment region and the mixing were

substantially increased. In an experimental study, Yu et al. 41 used a ramp nozzle

that creates large scale structures which are responsible for the shear layer growth

enhancement. Gutmark et al. 42 studied experimentally the performance of a jet

injected from a supersonic tapered-slot nozzle. The jet spreads primarily at the
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conical section with small spread at the major axis side. The growth rate of the

turbulent level in the core region, as well as in the jet's circumference, was higher than

in the circular or elliptic jets. The increased turbulence production was attributed

to the axial vorticity component generated by the nozzle's geometry. The turbulent

intensity level is lower at the center, but it is uniformly distributed accross the jet,

with the highest relative intensity concentrated in the shear layer of the jet (the jet's

circumference).

Based on studies made mainly under subsonic conditions, Swithenbank and

Chigier 43, proposed to enhance supersonic mixing by swirl. Tangential injection of

fuel into a centrally located swirl chamber results in a spiral flow within the chamber,

and the generation of a swirling jet at the nozzle exit. Fluid emerging from the jet

has a tangential velocity distribution in addition to the axial and radial components

of velocity encountered in nonswirling jets. The rate of entrainment and mixing

is substantially increased as compared with nonswirling jets. Recently Settles 44,

using swirl vanes mounted upstream of the nozzle in order to obtain swirling jets,

found that swirl enhances compressible mixing. The amount of mixing enhancement

increases with increasing swirl. Cutler et al. 45,46 and Kraus 47 generated swirl by

using tangential injection into a plenum chamber ahead of a convergent-divergent

nozzle. The mixing layers growth rates with matched exit pressure were shown to

increase up to three times with the addition of swirl. When operated overexpanded,

considerable turbulence was produced caused by shock interactions and probable

vortex breakdown.
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1.2.3.3 Direct interaction technique

This technique relies upon injectant interaction with the freestream to generate

convective mixing. Low angled transverse injection has been studied where the fuel

is injected from ports in a flat combustor wall at angles of 10 to 30 degrees rela-

tive to the freestream flow direction 48,49. The injection with low transverse angle

could increase the mixing rate and jet penetration while retaining the majority of

the injectant thrust 49. It was found by Fuller et al. 49 that coupling low tranverse

angle with yaw angle may affect the mixing in different ways, depending upon the

conditions : free stream Mach number, injection pressure, transverse angle, and yaw

angle. It may increase the overall plume cross section, thus making the mixing layer

larger ( Mach 3 and transverse injection angle of 30 ° ), but under other conditions

( Mach 6 and transverse injection angle of 15 ° ) it may degrade the mixing rate and

decrease the penetration. Other results showed that the entire injectant plume re-

mained supersonic and that moderate total pressure losses were found by Fuller et

al. 49 . A new injector concept has been studied by Cox et al. 50, in which an array of

flush-wall injectors was arranged in such a way as to induce large vortical structures

in the main stream, that increase entrainment and mixing a sort of "aerodynamic

ramp". Their experimental and computational results demonstrated the creation of

large-scale vortices in the mixing region with reasonably low losses and good mixing.

A particular case of the transverse injection is the normal injection, in which all

the injector thrust is lost. In addition, the shock wave system generated by such

geometry, the shock-shock interactions, and the shock-boundary layer interactions

cause substantially total pressure losses. In two recent works, the complex flowfields

induced by gaseous secondary flow injected normally into a supersonic mainstream

have been studied experimentally. Aso et al. 51 experimentally studied the normal
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injection of nitrogen into a M = 4 air stream through _z •single transverse slot nozzle

mounted on a fiat plate model. As the freestream is partially blocked by the sec-

ondary flow, a strong bow shock wave is formed in front of the injection point. Ahead

of the injection point the boundary layer separates due to the interaction between the

shock wave and the boundary layer, and a separation shock wave is generated ahead

i

of the bow shock that causes a shock-shock interaction with the bow shock. Just after

the injection point the boundary layer reattaches and a recompression shock wave is

generated. Hollo et al. 52 investigated a staged transverse injection of air into a M= 2

freestream of air. The interaction between the injectors accounts for the dramatically

increased mixing rate produced by the staged injectors compared to a single injector.

A subsonic region was observed just upstream of the second injector. It is significant

to note that the far-field mixing is approximately the same as in the parallel injection

schemes ! The near-field mixing in normal injection schemes is dominated by the

large-scale vortices generated by the jet/freestream interaction, whereas the far-field

mixing depends on small-scale turbulence, such that the far-field mixing essentially

Z ?!
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has no "memory" of the near-field stirring, the transition from near-field to far-field

mixing taking place about 10 to 20 jet diameters downstream 52.

Because shocks and expansion waves are basic features of a supersonic flowfield,

mixing augmentation may be obtained by the interaction of the injectant with expan-

sion fans or with shock waves. When a hydrogen flow was accelerated into an air flow

1 by an expansion fan, the interface was unstable, and rapid development of large scale

structures was evident 53. These large structures play an important role in mixing

augmentation. The effect of shock impingement on the mixing and combustion was

numerically simulated by Domel et al. 54. A streamwise oblique shock was impinged

on a hydrogen jet which was injected behind a backward facing step in a direction
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parallel to a supersonic freestream of air vitiated with _20. The results showed that

the shock impingement enhanced mixing and combustion.

Another mixing augmentation attempt was made by impinging spanwise shock

waves against a supersonic mixing layer 55. A shock wave emanated from a dis-

turbance on the sidewall of the combustor (or test cell) and intersected with the

supersonic shear layer formed between the fuel and the air stream. The pressure dis-

continuity across the wave could not be sustained by the mixing layer and an apparent

vortex was formed.

Mixing improvement has also been achieved by employing an oscillating shock.

This method was studied numerically by Kumar et al. 56, and options for producing

such shock waves were discussed.

1.2.3.4 Summary of mixing techniques

A review of the high speed mixing experimental database is presented by Thomas

et al.57. They plotted the decay of maximum injectant concentration versus x/d

for the studies they reviewed, where x was the distance downstream and d was a

characteristic physical scale of the geometry, typically the diameter of the injection

nozzle. The data were plotted on a log-log scale and fit with a power law. The data

were categorized as free jets, transverse jets, wall slot jets, and hybrid jets. Due

to the variety of experimental conditions, direct comparisons were not warranted.

Considered as a whole, the data were grouped around a decay exponent of -0.8 .

1.2.4 Mixing and Combustion

The combustion of the fuel in the combustor releases energy which is, at best,

partially recovered in the nozzle and along the afterbody generating useful thrust.
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The time required for the heat release process to go to completion, and hence the

length of the combustor, is dependent upon the time needed to mix the fuel and air,

and the time needed for it to react. In practice, these two processes are occuring

simultaneously 58, however to obtain complete combustion, the fuel and the air must

be mixed in the correct proportions down to the molecular level. Waitz 32 cited an

unpublished work by Yeung in which the hydrogen-air reaction has been modeled for

conditions corresponding to a variety of flight Mach numbers. The time required for

initiation of a hydrogen-air reaction in a typical scramjet combustor is of the order of

25 #s. Swithenbank et al. 58 claim that for their conditions the hydrogen-air reaction

time is of the order of 1 #s. While strongly dependent on the pressure and on the local

static temperature, the two values for the chemical kinetic time allow estimation of

the extent to which supersonic combustion is controlled by mixing. Once the reaction

is initiated, complete combustion can occur within a very short distance, on the order

of millimeters.

The pertinent non-dimensional number is the first Damk6hler number, Da, de-

fined as the ratio of the flow characteristic time to the reaction characteristic time.

Reactions with Da >> 1 are mixing controlled. For example, a typical aircraft fly-

ing at Mach 15, may have the air in the combustor at Mach 5 with a velocity of

4000 m/s. For these conditions Da = 1 is obtained at a distance of 0.1 m down-

!Q

stream to the injector. Given the fact that the combustion chamber can only be a

few meters long, ( taking a typical value of 4 m ) the DamkShler number at the end

of the combustor is, Da = 40. Mungal and Frieler 59 found, in an experimental study

on two-dimensional subsonic shear layer, that the mixing limited regime is reached

when Dax > 40, where the subscript z stands for the local station coordinate. The

flow characteristic time is defined as the streamwise distance between the measuring
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station and the mixing transition point divided by the average velocity of the two

streams : (/)1 + U2)/2. The distance downstream of the splitter plate at which a

significant amount of mixed fluid is first present is called the mixing transition point.

Finite rate chemistry effects appear below this value.

The effects of the heat release associated with the combustion on the mixing were

discussed in several papers. The heat release associated with the combustion produces

an upstream shock compression and thereby changes the upstream flow conditions in

the combustor. Two principal effects of heat release on the mixing layer have been

observed, both theoretically and experimentally. First, at any axial location, both

the shear layer and the included mixing layer occupy a greater volume fraction of the

combustor, due to the volume dilation resulting from the temperature rise caused by

the combustion at essentially constant pressure. The second effect is to reduce the

rate of growth of the mixing layer. Menon et al. 60 studied numerically the effects

of compressibility on the large scale structures of the reacting mixing layers. They

confirmed that at low convective Mach numbers heat release reduces the growth rate

of the shear layer and the amount of product formed, but at high Mach numbers

heat release increases the growth rate of the shear layer. Sekar and Mukunda 61

conducted numerical simulations of high speed reacting and non-reacting flows for

a hydrogen-air system. They found that the growth rate with heat release is only

7% lower and the entrainment is 25% lower with heat release than without. Their

conclusion was that high speed mixing is not severely hampered by heat release.

In three-dimensional numerical simulations conducted by Planche and Reynolds 62

the central role of streamwise vortices was demonstrated. The streamwise vortices

strongly increase the mixing and the total reaction rate. Riggins and McClinton 25

point-out that reaction dramatically increases the rate of decay of vorticity and this
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may decrease the rate of mixing. Vuillermoz et al. 63 numerically solved the two-

dimensional, compressible, and reactive mixing layer between hydrogen and air. They

found that for Da ,_ 1, there are homogeneous pockets of radicals not yet converted

to product. In this region the chemistry is strongly affected by the flow dynamics.

For Da >> 1 the result is a stretched flame and the reactions are completed by the

end of the mixing period.

The conclusion is that combustion in typical scramjet applications will not be

mixing controlled in the classical sense. It will, however, be mixing dominated. For

example, 80% mixedness would correspond to 80% complete combustion 58. The

heat release associated with chemical reaction has little influence on the mixing.

To minimize the chemical kinetic limitations, the local static temperatures must be

sufficiently high so that the ignition time plus the reaction time are less than the time

of the flow through the combustor. Hence, the investigation of mixing enhancement

is germane to combustion enhancement.

1.2.5 Mixing and Losses

Any mixing augmentation scheme will increase the irreversible losses, decrease

the axial momentum and eventually diminish the engine thrust so that there is always

a trade off to be considered 26. There is probably some optimum trade between the

total pressure losses induced by the fuel injection and mixing augmentation process

and the resulting increase in combustion efficiency. As pointed out by Swithenbank

et al. 58, there is a competitive balance between irreversibilities produced by mixing

enhancement and the advantage gained by additional reaction due to the enhanced

mixing. The two extrema are high total pressure loss ( high mixedness ) leading to

high combustion efficiency but low overall engine performance, and low total pres-



21

sure loss ( low mixedness) causinglow combustionefficiency and again leading to

low overall performance.The practical realization of anoptimum combustorrequires

proper mixing within in a short length becausewall friction lossesin ducted super-

sonic flows are extremely large. The flow lossesincurred by placing a ramp in a

supersonicairstream must not negatethe benefit which is obtained by the mixing

enhancement. Flow lossesfor a ramp configuration include shocks,frictional and

pressuredrag on the faceof the ramp, vorticity generationlosses,basepressuredrag,

and flow recirculation26. There are also practical difficulties with operating ramp

type injectors in extremely high enthalpy flows within a scramjet combustor, and

although the presentstudy doesnot addressthesepractical issues,it is necessaryto

point them out. Becausethe ramp injector performancedependson ramp's geometry

and reliesheavilyon sharpcorners,the effectivenessover longperiodsof time in such

a harshenvironmentis questionable.

1.2.6 Mixing Efficiency

In order to compare the different mixing techniques an appropiate global value

of "mixedness", varying only in the axial (downstream from the injector ) direction,

x, has to be defined. Riggins 24 defines the mixing efficiency as the amount of fuel

that would react if complete reaction occurred without further mixing divided by the

amount of fuel that would react if the mixture were uniform. Heiser et al. 1, p.303,

formulate the above definition as follows : if the far-field equivalence ratio is denoted

by CFF, then the mixing efficiency, _lM(X) is defined as :

* For CFF <__1, 7IM(X ) is the fraction of fuel which is micromixed with air at any

location x.
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• For CFF > 1, rlM(X ) is the fraction of air.which is micromixed with fuel at the

axial location x.

The equivalence ratio is the fuel-to-air ratio ( on a mass basis ) divided by the fuel-to-

air ratio under stoichiometric conditions. Therefore, qM(x) measures the complete-

ness of micromixing of either fuel or air, depending on whether the overall equivalence

ratio CFF is less than or greater than one, respectively. Other mixing-efficiency defini-

tions could possibly be defined. According to Swithenbank et al. 58, mixing efficiency

means a cost/benefit ratio, where the "cost" is the mechanical energy drawn from

the air or fuel stream and expended on stirring, and the "benefit" is either increased

rate of growth of the near-field mixing layer or reduced axial distance required for

complete micromixing. In the present study the mixing efficiency is defined according

to Riggins 24.

1.3 Scope of the Investigation

It is likely that some combination of mixing enhancement methods may be re-

quired to obtain the required mixing for a supersonic combustor. Hence the goal of

the work presented here was to evaluate the performance of injectors which combine

different mixing enhancement techniques, looking for constructive coupling between

them. This work addressed the mixing enhancement in the near-parallel injection

schemes. Parallel injection schemes have two clear advantages over transverse injec-

tion :

1. Additional thrust is generated by injecting fuel in the downstream direction.

2. The strong bow shocks generated by transverse fuel injection into a supersonic

stream are eliminated, minimizing the stagnation pressure losses.
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Based on previous work in this area, the swept-ramp appears to be a practical injec-

tion scheme. Therefore, in this study the swept-ramp injector developed at NASA

Langley Research Center by Northam et al. 22 was further investigated as a mixing

augmentation device. The swept-ramp injector configuration was designed to gener-

ate vortical flow ( streamwise vorticity ) and local recirculation regions downstream

from the ramp base similar to the rearward facing step that has been used for flame

holding in supersonic flows. The fuel was injected at a low injection angle ( 10 ° )

which provided for the penetration of the fuel into the air, while preserving most of

the fuel momentum. In addition, fuel preconditioning devices within the injector's

nozzle were experimentally explored in order to further improve the mixing by cou-

pling the preconditioned injectant flow with the vortical flow generated by the ramp.

This combination of mixing augmentation techniques was intended to provide the nec-

essary mixing with reasonable losses in total pressure. A coordinated experimental

and computational program was carried-out, utilizing experimental techniques and

computational methods.

1.3.1 Experimental Scope

The experiments were conducted on a single fuel injector placed in a rectangular

cross-section duct. Injection of helium at Mach 1.7 into a Mach 2 air stream simulated

hydrogen injection into a typical scramjet combustor. Experiments with air as fuel

were also conducted. The air "fuel" was injected at Mach 1.63 into Mach 2 air stream.

Of primary interest in these tests was the definition of the flow field features, partic-

ularly those related to the mixing enhancement by the fuel preconditioning devices.

However, this study was limited by using helium and air to simulate the hydrogen

fuel, and by conducting only cold flow experiments. The mixing performance was
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evaluated from spatial scaleswhich were discernable-within the experimental and

computational resolution. Increasein large-scalemixing of the flow field increasesthe

molecular-scalemixing by increasingthe interfacial shearsurfacearea,thus facilitat-

ing the diffusion process.Lackof temporal resolutionprecludedthe measurementsof

time-fluctuating componentof the flow field. The phenomenaassociatedwith time-

fluctuations wereinferred from the mean flow field. Mean flow observationsenabled

estimatesof the importanceof theseeffects,but did not providesufficientinformation

for detailed analysis.

1.3.2 Computational Scope

An existing three-dimensionalNavier-Stokescode was used to conduct a nu-

merical study which closelytracked the experimentalone. Modeling and simulation

allowed the analysisof global aspectsof the injector performance. The numerical

resultsprovided knowledgeof flow variablesat everypoint in the computational do-

main, and allowedstudy of derivedquantitiessuchasvorticity. The numericaldata

complementedthe experimentaleffort, providedinsight into the generalflow phenom-

ena,and enhancedthe understandingprovidedby the experimental data.



Chapter 2

EXPERIMENTAL METHODS

AND APPARATUS

2.1 Test Facility

The tests were conducted in the NASA Langley Transverse Jet Facility shown

schematically in Fig. 2.1. This is an open-loop blowdown facility, with a rectangular,

Mach 2 convergent-divergent nozzle section. A rectangular cross-section duct assem-

bly is connected at the nozzle exit. The duct has a uniform and constant cross section

of 1.52" by 3.46". The measurements were taken at the exit plane of the duct. In

order to allow measurements at different cross-sections downstream of the injection

plane, the duct can be extended by adding inserts in steps of two inches, from 4.5"

total length up to 10.5" total length. The flow through the duct is unheated air at a

nominM static pressure of one atmosphere, that discharges into the ambient air. Un-

less otherwise stated, the stagnation conditions for these tests were : P0 = 115.5 4-0.5

psia, and To equal to the ambient temperature, measured to 4-0.5 ° C. The repeata-

bility of the total pressure between runs was within 4-0.5 psia. The mass flow rate of

the air at these conditions is _ 8.0 lb/s ( _ 3.6 kg/s ).

25
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The "fuel" supply system designed and constructed for these studies is shown in

Fig. 2.1. The system is capable of supplying air or helium at controlled conditions.

The system provides air up to a maximum of 1000 psia from the compressed air

plant, and helium up to a maximum of 2000 psia from 10 compressed manifolded

bottles. Hence the helium supply is restricted to short runs. The system also has the

ability to seed the injectant with ethanol for visualization tests. The ethanol injection

is achieved by pressurizing the ethanol tank with nitrogen, at 100 psia higher than

the pressure of the injected gas ( the "fuel" ). The flow rate of the ethanol injected

into the fuel line is regulated by means of a fine needle valve. An ample length of

pipe ( _ 60 feet ) with several elbows ensures evaporation and mixing ahead of the

injector's nozzle.

2.2 Injector Model

The injector model shown in Fig. 2.2 has one swept-ramp located in the middle

plane of the duct. The top wall of the ramp is inclined 10.3 ° relative to the duct

wall. The side walls of the ramp are swept back at an 80 ° angle relative to the main

flow direction which is parallel to the duct walls. The ramp ends in a nearly square

base, ( 0.685" wide by 0.639" high ), corresponding to an area blockage of less than

9%. On both sides of the middle ramp there are swept sidewalls simulating adjacent

ramps, thus the geometrical influence of an array of ramps can be tested in these

experiments. The middle ramp is equipped with an injector connected to the "fuel"

supply system. The injection line is at a 10.3 ° angle relative to the main flow. The

injector consists of a convergent-divergent nozzle insert. The six different nozzle

inserts used in the experiments are described in the following section.
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Six different nozzle inserts were made separately and then inserted into the ramp.

A set-screw held the nozzle inserts in place. All the nozzles had the same exit area

and the same throat area, hence they had the same exit Mach number and the same

mass flow rate for each gas used. The calculated exit Mach number for helium was

1.7, and the calculated exit Mach number for air was 1.63. The six nozzle inserts

shown in Fig. 2.3, were as follows :

1. Circular nozzle, Fig. 2.3a : This nozzle was the baseline configuration. It was

a convergent-divergent nozzle with a circular cross section, a throat diameter of

0.250" and an exit cross section diameter of 0.282" . The area ratio A/A* was

1.272.

2. Nozzle with three downstream facing steps, Fig. 2.3b : This nozzle had

a circular cross section with three downstream-facing steps in the divergent

section, each having a length-to-step height ratio of 16. These steps enhanced

the small scale turbulence 37.

. Elliptical nozzle, Fig. 2.3c : Only the divergent section of the nozzle was

elliptical with an aspect ratio of 1.2 . The elliptical nozzle is known to have

a higher spreading rate higher in the minor axis plane than in the major axis

plane 35. The higher spread is accompanied by a faster decay of the mean

velocity along the jet axis and a higher amplification of turbulent small scale

fluctuations. This nozzle was tested in two positions : first, where the major

axis was horizontal, and the second, where the major axis was vertical.
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4. Nozzle with vortex generators, Fig. 2.3d : This was a circular cross section

conical nozzle with four vortex generators in the exit plane, corresponding to an

area blockage of about 5%. The vortex generators were rectangular tabs, 0.02"

× 0.04", projecting normally into the jet. The tabs introduced a significant

!i _ i:

u

!!iiii!ii'iii

distortion of the jet cross section. The mixing/entrainment area was substan-

tially increased due to these clistortions 38,40. This nozzle insert was tested in

two positions : with the vortex-generator tabs in cross orientation, and with

the tabs rotated 450 relative to the previous position, thus obtaining an "X"

orientation.

5. Tapered-slot nozzle, Fig. 2.3e : The tapered-slot nozzle had a rectangular-

slot throat that blended smoothly into the conical inlet and exit sections. The

tapered-slot nozzle jet spreads primarily at the conical section with small spread

at the major axis side. There is also an increase in the turbulence production

due to the axial vorticity component generated by the nozzle's geometry 42. The

H

turbulent intensity level is lower at the center, but it is uniformly distributed

across the jet, with the highest relative intensity concentrated in the shear layer

of the jet (the jet's circumference). This nozzle insert was tested in two positions

: with the throat vertical, and horizontal.

6. Trapezoidal nozzle, Fig. 2.3f : This nozzle generates axial vortices at the

corners inside the nozzle, yielding a significant amplification of turbulent small

scale fluctuations 36.
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d. Nozzle with vortex generators

Front view
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c. Elliptical nozzle
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For all nozzles : Ae / At = 1.272

Fig. 2.3 Injector - nozzle inserts
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2.4 Flow Field Survey Apparatus

Twelve rake-mounted probes were used to investigate the flow field : four pitot

pressure probes, four cone static pressure probes, and four total temperature probes.

Given the measurements from these twelve probes, Mach number, density, and static

temperatures were determined. The pressure probes were connected to pressure trans-

ducers which were calibrated on-site using the same analog-to-digital converter ( A-

to-D ) and the same personal computer ( PC ) used for acquiring the experimental

data. The transducers were calibrated just before the beginning of the probe experi-

ments. Periodic checks of the transducers response showed that the error was less than

-4- 0.5 psia. The power supply to the pressure transducers was held at 5 +0.0010 volts.

The sampling loop delay chosen for the probes measurements (4 sec.) was sufficient

to avoid measuring the transient due to the stage movement. The pressure transduc-

ers were hooked-up to a Hewlett-Packard 3497A data acquisition and control unit 64

which is controlled by a PC. The measurements were taken at a sampling rate of 50

nz.

2.4.1 Probe Rake

A schematic of the rake is shown in Fig. 2.4. The rake assembly is mounted on a

translation stage ( Thomson 2DB-12-OUB-B ) which is controlled by a PC, moving

the rake according to a pre-determined plan ( see Sec. 2.6 : "Data Acquisition" ).

The spacing between the total temperature probe and the pitot pressure probe was

0.145", centerline to centerline. The centerline of the conical static probe was set 0.29"

away from the centerline of the neighbor probes to eliminate undesirable interference

from the other probes. The probes extended 0.75" from the rake to minimize rake
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•2.4.1.1 Total pressure probes

A drawing of the probe is shown in Fig. 2.5a. Each probe used had a 0.030"

diameter sensing orifice, and was connected to a pressure transducer by a 6 feet long,

0.04" internal diameter stainless steel tubing. Strain-gage pressure transducers with

a range extending to 300 psia and an accuracy of 0.5% full scale were used to measure

the total pressures.

/

ii)
i!__ ,

2.4.1.2 Static pressure probes

The static pressure was measured on a cone of 10 degrees half angle. The probe

is shown in Fig. 2.5b. Four 0.020" diameter holes were drilled perpendicular to the

surface of the cone, 90 degrees apart. Approximately 6 feet stainless steel tubing of

0.04" internal diameter ran between the probe and the transducer. The strain-gage

type pressure transducers had a range extending to 50 psia with a quoted accuracy

of O.1% full scale.

2.4.1.3 Total temperature probes

A copper-constantan thermocouple (type "T" junction 65) probe, shown in Fig. 2.5c,

was used to measure the total temperature. The diameter of the bead was about 0.03",

and the conduction errors were minimized by using fine wire ( 0.01" diameter ). The

thermocouple was enclosed in a 0.060" internal diameter radiation shield. Two 0.030"

diameter vent holes were located in the radiation shield downstream of the thermo-

couple. Due to the size of the radiation shield, the capture area of this probe was

significantly greater than that of the other probes thus reducing the resolution of this
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Fig. 2.5 Flow field survey probes
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probe in comparison with the pressure probes. The thermocouples were hooked-up to

an Hewlett-Packard 3497A data acquisition and control unit 64 which was controlled

by a PC. The measurements were taken at a sampling rate of 50 Hz. The ther-

mocouple voltage was reduced using a cold junction signal on the data acquisition

multiplexer board. Comparison of the output of the total temperature probe with

air plenum chamber total temperature was used to determine the effective recovery

factor for the probe. In all cases, the probe measurement was about 99% + 0.5% of

the settling chamber temperature.

2.4.2 Errors in Probes Location

The experimental sampling grid is shown in Fig. 2.6. The error in the grid points

( probes coordinates ) are estimated in the present sub-section. The error due to the

accuracy of the driving screw of the translation stage was very small. The screw has

5 ram/revolution, the stepping motor has 25600 steps/revolution, giving an accuracy

of about 1.95 x 10 -4 ram/step. The motor position accuracy is within one step, i.e.

1.95 x 10 -4 mm, which is much lower than all other errors in the system, and is

neglected in the present analysis. The error in the z-direction is determined by the

location of the first position of the rake ( = Iz ), and is within -t- 0.5 mm. The error in

the y-direction ( = ly ) is + 0.005 inch ( _ -4- 0.13 mm ). This is the width of the ruler

mark made on the connecting plate between the rake assembly and the translation

stage. Therefore, the error in the grid coordinates is :

lyz = _ + 12 - x/0.132 + 0.52 _ 0.51 mm ,,_ 0.02 inch (2.1)

The following inaccuracies were set during the assembly of the rake and remain

constant during the runs as long as the rake was not opened. The error in the
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distance between the rake and the probes tips ( = l_-) was about :J= 0.5 mm. Due

to this error the probes tips were not in the same cross-section plane. The distance

between two adjacent probes was determined by the distance between the grooves in

which the probes were placed. These grooves were machined with a tolerance ( = 12 )

of + 0.01 inch ( _ =l= 0.25 mm ). The alignment of the probes -- the tip of each probe

-- was within ± 0.5 mm from the normal; /3 is the error in y-direction (spanwise);

and,/4 is the error in z-direction; each was + 0.5 mm. An error of 0.5 mm corresponds

to an angular error of 1.5 °. Therefore the total error in the probes' tips location is :

(2.2)

Hence the "point" measured by the probes was actually a small volume in space and

can be approximated by a sphere having a radius of 1 mm ( 0.04 inch ) .

2.4.3 Resolution of the Probes

The resolution of the probes was determined by the capture area of the probes.

For the total pressure probe the inlet diameter of the probe was 0.030 inch (

0.76 mm ). This dimension was greater than the Kolmogorov's scale. The Kol-

mogorov's scale can be inferred from Batchelor's scale calculated in Sec. 2.9.1. Since

the Schmidt number was about one, the two scales were the same. Batchelor's scale,

and hence Kolmogorov's scale is shown in Table 2.6, and is )_B = 2.25 × 10 -2 mm

for air. This length scale was about 34 times smaller than the inlet diameter of the

total pressure probe. The total temperature probe had an inlet diameter of 0.060

inch ( _ 1.5 mm ). Since the Prandtl number was about one, the temperature mi-

croscale was the same as Kolmogorov's scale estimated above, and the inlet diameter

was greater than the temperature microscale.
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2.5 Imaging. System

The imaging system was composed of two sub-systems : the laser/optics system

and the camera/image acquisition system.

2.5.1 The Laser and the Optics System

Illumination was obtained using a frequency doubled Nd:YAG laser 66, pulsed at

6 Hz with a pulse length of 10 as. The laser and the optics layout is shown in Fig. 2.7.

The output energy was about 200 mJ per pulse at 532 nm. The frequency of the 532

nm light was doubled to 266 nm in the ultra violet with 10% to 15% efficiency 46, using

a temperature-phase-matched KD*P crystal mounted in a temperature stabilized dry

cell. The ultra violet light was split from the residual green with a Brewster's angle

prism and the plane of polarization was rotated to the vertical with a quartz zero-

order half-wave plate for the vertical light sheet. For the horizontal light sheet the

plane of polarization was rotated to the horizontal. The light sheet was formed by

a pair of lenses : a piano-concave cylindrical lens with a focal length of 100 mm,

and a piano-convex spherical lens with a focal length of 1 m. Optics are UV grade

fused silica, coated for 266 nm . The theoretical (diffraction limited) light sheet

thickness was about 50 #rn 46. Typically the laser light sheet was about 5 cm wide

and 0.5 mm thick at the waist. The spherical and cylindrical lenses were mounted on

a moveable rail system that allowed the light sheet to be formed and moved at any

position. The laser beam was brought to optics mounted on the rail by a periscope

( two 90 ° turns by two mirrors ).
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2.5.2 Camera and Image Acquisition System

The images were recorded by an intensified video (RS172) using a Photometrics

AT200 CCD camera 67 through a UV-Nikkor with F/4.5 and 105 mm focal length

camera lens. The CCD array contains 512 × 512 pixels, each pixel corresponds to

20#m × 20#m. The images were binned, with a binning factor of two. Therefore

the images have only 256 × 256 pixels. Binning is a technique of combining charge

from adjacent pixels during the readout process. Binning improves the signal-to-

noise ratio and extends the dynamic range of the CCD imager at the expense of

spatial resolution. Because binning reduces the number of pixels to be processed and

digitized, readout speed is also increased, and the storage space on the computer disk

and in the computer memory is reduced. The camera has a charge transfer efficiency

(CTE) of 0.99999, where 1.0 is perfect. The quantum efficiency of the CCD was about

35% at the 266 nm light used in the present study. Quantum efficiency measures the

sensor's efficiency in generating electronic charge from incident photons. At a given

wavelength the creation of charge from incident light is intrinsically linear. The

quantum efficiency and the system noise level ( discussed in Sec. 2.10.2.5 ) determine

the sensitivity of the CCD imager. The camera system was interfaced to a personal

computer equipped with _ frame grabber for data acquisition and storage. The images

were composed of 16-bit data (65536 gray levels) and were digitized at a rate of 40,000

pixels per second with a digitization noise of four electrons r.m.s. ( see item 1 on

page 68 ). The camera was mounted on a rail system that allowed it to be moved

to any desired location. The camera exposure time was set at 167 ms ( 1/6 sec ) to

ensure the capture of the scattered light from a single laser pulse. This was done

because of software limitations that prevented the triggering of the camera from

the laser pulse. After the software was upgraded, this limitation was removed, and
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triggering was possible. The computer required.approximately four seconds to digitize

an image and display it on the screen. Sequences of ten of these single shot images

were acquired for all the cases. Details about images acquisition are presented in

Sec. 2.6.2. A ten seconds exposure time was also employed for several sequences. The

image thus acquired can be considered an average of sixty instantaneous images. For

this exposure time, sequences of two to five average images were acquired.

2.6 Data Acquisition

The investigation required the development of two data acquisition systems :

(1) flow field survey data acquisition system, and (2) image acquisition system. A

description of each system is given below.

2.6.1 Flow Field Survey

The investigation required the design and development of an automated, personal

computer based, data acquisition system. A special computer program, written in

HT-BASIC 68, was developed and used to control the traverse stage. The program

also controlled the Hewlett-Packard 3497A data acquisition unit 64, which acquired

the data at a sampling rate of 50 Hz, and recorded the pressure transducers and the

thermocouples output. First, the translation stage computer -- the "compumotor "69,

was turned on, and allowed to reset. Then the computer program on the PC was

started and took control over the compumotor and the analog-to-digital unit. The

data acquisition algorithm shown in Fig. 2.8 was the basis for the computer code, and

was used in all of the flow field surveys conducted. At each point in the flow field the

data were recorded according to the order of the A-to-D channels. Ten readings per
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probe were taken at each point in the flow field, in the main plenum chamber, and in

the fuel plenum chamber. Subsequently, the average and the standard deviation for

each probe reading were calculated.

2.6.2 Images Acquisition

A separate personal computer was used to acquire and store the data from the

CCD camera. The PMIS software 67, was used for images acquisition and processing.

The image acquisition plan was as follows :

1. one 10 ms image of grid pattern ( to establish coordinate location ).

2. one sequence of ten background images at 167 ms.

3. one sequence of ten background images at 10 s.

4. one sequence of ten reference images at 10 s in still air.

5. one sequence of ten reference images at 10 s in slow flow ( just to clean the dust

from the air ).

6. one sequence of ten images at 167 ms of the main flow only.

7. one sequence of ten images at 10 s of the main flow only.

8. two sequences of ten images at 167 ms of air jet injected into the main flow.

9. one sequence of five images at 10 s of air jet injected into the main flow.

10. one sequence of five images at 167 ms of helium jet injected into the main flow.

11. two images at 10 s of helium jet injected into the main flow.
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Fig. 2.8 Data acquisition algorithm
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12. four sequences of ten images at 167 ms of ethanol seeded air jet injected into

the main flow.

13. one sequence of five images at 167 ms of ethanol seeded helium jet injected into

the main flow.

14. one sequence of two images at 10 s of air jet injected into the main flow with a

shadow in one side of the light sheet.

15. one sequence of two images at 10 s of air jet injected into the main flow with a

shadow in the other side of the light sheet.

16. one sequence of ten reference images at 10 s in slow flow ( just to clean the dust

from the air ).

17. one sequence of ten reference images at 10 s in still air.

18. one sequence of ten background images at 10 s.

19. one sequence of ten background images at 167 ms.

20. one 10 ms image of grid pattern.

For the grid image, a grid made from graph paper was placed exactly in the field

of view of the camera. The background images were taken in complete darkness. The

reference images were taken with the light sheet at the model but without flow or with

a very slow flow to blow away the dust in the air. The background, reference, and

grid images were repeated at the end of the test to check if there were any changes

during the run. The above plan was applied in all the experiments.
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2.7 Experimental Conditions

2.7.1 Main Flow

The main flow was obtained from compressed dry air supplied through a 600 psia

supply line. The water concentration in the main flow was estimated to be in the range

of three to ten parts per million 46. The Mach number at the nozzle exit was calculated

( •

to be two. The nominal stagnation pressure was 115. psia yielding a static pressure

of 14.7 psia ( 101000 Pa ) at the nozzle exit. The ambient stagnation temperature,

varied between 282 K and 298 K. During a run, the stagnation temperature dropped

as much as 5 K. Based on a stagnation temperature of 290 K, the main flow velocity

was 508 m/s and the mass flow rate was 3.78 kg/s. The Reynolds unit number was

101. × 106 1/m. The main flow conditions are summarized in Table 2.1.

2.7.2 Fuel Flow

Two kinds of "fuels" were injected : air or helium. The air was obtained from a

1000 psia supply line and the helium was supplied from compressed bottles. During

the run the pressure was not steady. The measured pressure fluctuations are shown

together with the nominal values. Table 2.1 summarizes the nominal fuel injection

conditions. Tables 2.2 and 2.3 present the shear layer characteristics of the present

flow. The convective velocity and Mach number, and the relative Mach number are

defined in Sec. 1.2.2.

2.7.3 Ethanol Injection

The amount of ethanol injected was changed between the different runs from

7 cc/min up to 10 cc/min. During each run the amount of ethanol was maintained
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Table 2.1 Main flow and fuel injection conditions

Main flow Helium jet

Stagnation :

Po kPa 793 + 3 434 + 21

To K 290 290

po Kg/m 3 9.52 0.721

Throat :

P* kPa 419 =k 2 211 + 10

T* K 242 217

P* Kg/m 3 6.03 0.468

Nozzle exit :

P kPa 101 :t= 1 80 =t=5

T K 161 147

P kg/m 3 2.193 0.263

U m/s 508 1213

a m/s 254 713

M 2.00 1.70

Air jet

510 + 28

290

6.13

269 + 15

242

3.87

115=1=6

189

2.123

449

275

1.63

rh kg/s 3.78 0.0128 0.0384

Red -- 199,000 540,000

Re x 106 1/m 101 28 75
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Table 2.2 Shear layer characteristics for helium injection

Property Helium jet Air- mainstream

Stream No. 1 Stream No. 2

7 1.67 1.40

Velocity, U m/s 1213.

Sound velocity, a m/s 713.

v= u1/u 2.38

508.

254.

= Pl/f12 0.120

P=Pl/P2

T = T1/T2

0.792

0.913

.A// = .A_I/.A_ 2

AU = U1 - U2 m/s

0.138

705.

Re4au

Convective Velocity, Uc

Convective Mach number,

m/s

Mc

115,000

693.

0.73

Relative Mach number, Mn 1.46
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Table 2.3 Shear layer characteristics for air injection
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Property Air- mainstream

Stream No. 1

Air jet

Stream No. 2

7

Velocity, U

Sound velocity, a

U2/V,

P=P2/Pl

P = P2/Pl

T = T2/T1

M = M2/M,

AU=U_-U_

Red,aU

Convective velocity, Uc

Convective Mach number,

Relative Mach number,

m/s

m/s

m/s

m/s

Mc

MR

1.40

508.

254.

0.882

0.968

1.138

1.174

1.000

61.

73,000

480.

0.11

0.23

1.40

449.

276.
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constant. The ethanol wasstoredat room temperatureof about 296 K which results

in a density of 787 kg/rn 3, giving a mass flow rate between 0.92 × 10 -4 kg/s and

1.31 x 10 -4 kg/s. Table 2.4 summarizes the partial pressures and the mass and molar

fraction of the injected ethanol. The ethanol properties were taken from Wegener et

al. 70.

Fig. 2.9 shows the saturation curve for ethanol, plotted with the ethanol vapor

pressure as it expands through the supersonic nozzle. The state of the ethanol at the

stagnation conditions is labelled 1. At these conditions the ethanol is fully evaporated.

As it expands through the nozzle, it follows the isentropic curve shown. Wegener et

al. 70 found that condensation of ethanol vapor in supersonic nozzle begins at super-

saturation ratios of about 10-14, depending on the ethanol loading (partial pressures).

Based on their results, for the ethanol loading in this study, the condensation will

occur at a supersaturation ratio of about 12. Fig. 2.9 shows that this supersaturation

ratio (state 2 on the plot) occurs at a temperature of about 230 K for air which

corresponds to a Mach number greater than one. Thus the condensation begins just

downstream of the sonic throat and ends by the time the flow reaches the nozzle

exit. If this condensation ratio holds in helium too, then the ethanol condensation

in helium begins at a temperature of 223 K (state 2 on the plot) which corresponds

to a Mach number smaller than one. Thus the condensation in helium begins just

upstream of the sonic throat and ends by the time the flow reaches the nozzle exit.

Hence the tracer droplets are formed within the nozzle and are injected by the "fuel"

jet into the main flow.
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Table 2.4 Ethanol injection conditions

Property In helium jet In air jet

rh kg/s 0.92 × 10 -4 1.31 × 10 -4 0.92 × 10 -4 1.31 × 10 -4

X 0.00067 0.00097 0.00151 0.00215

Y 0.0071 0.0100 0.0024 0.0034

A,4i,g=, kg/kmole 4.003 4.003 28.97 28.97

-/_//mi_ kg/k mole 4.30 4.42 29.0 29.0

Stagnation (vapor) :

P0 (partial) Pa

To K

291 421 770 1097

290 290 290 290

Throat (vapor):

P* (partial) Pa

T* K

141 205 406 578

217 217 242 242

Nozzle exit (condensed) :

puq,,id kg/m 3 917.3 879.3

T K 147 189
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Fig. 2.9 Pressure-temperature diagram for ethanol condensation process
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2.8 Flow Visualization

A planar Rayleigh/Mie scattering technique was employed in this study, which

allowed direct visualization of fluid mixing in the supersonic flow. The mixing process

was visualized by laser light sheet scattering from small ethanol droplets which con-

dense in the injector. Satisfactory flow tracking capability of scattering particles is

essential for reliable visualization. The aerodynamic behaviour of a particle depends

on its inertia and the drag force; the light scattering behaviour depends on the par-

ticle shape, surface area and refractive index. The common parameter determining

both aerodynamic and optical characteristics of the particle is its diameter. Both

issues are addressed in the following sub-sections.

2.8.1 Theory

Rayleigh scattering is a technique that has been used for both flow visualization

and quantitative density imaging for many years in low-speed flows, and recently in

supersonic flows as well. From a quantum mechanical point of view, a gas molecule

can absorb a photon from an incident electromagnetic wave. The absorbed photon

causes an electron to be excited into an unstable state for a very short time ( less

than psec )71. In elastic events, the electron then drops to its original state emitting

a second photon of the same frequency as the incident one. This emission, known as

the scattering process, is random in the sense that the photon can propagate with

equal probability in any direction in the plane normal to the polarization vector of

the incident E-field of the electromagnetic wave. Since the emitted photon is at the

same frequency as the incident photon, the Rayleigh scattering is not specific to the

molecules causing the scattering. Thus, this technique cannot be used for individual
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species concentration measurements but only .to measure total number density. It

is also possible for the energy input due to the incident photon to be dissipated by

collisions of the excited molecule with other molecules. In that situation the photon

energy would have been absorbed and converted into thermal energy. The parameters

controlling the scattering of planar electromagnetic radiation by isolated spherical

particles are d/A, the ratio of particle diameter to the incident radiation wavelength;

n, the refractive index of the particle relative to the surroundings; and the polarization

state of the incident radiation. The three scattering regimes are delineated as :

1. Rayleigh scattering for d/)_ << 1

2. Lorenz-Mie scattering for d/)_ ,.m 1

3. Geometric optics for d/)_ >> 1

i/

;i• •

The differential cross-section for Rayleigh scattering from gas molecules at 90 ° to

the plane of polarization may be expressed as 72

(O_) =4_r2(nsTP'i-l)2 (2.3)N rpA4

where nsTP, i and NsTp are the refractive index and the number density at standard

temperature and pressure ( STP ). In a mixture of gases, the Rayleigh scattering signal

is a function of the mole fraction weighted average of the scattering cross sections of

the individual gases 72

(0o) (0o)
_'_ mix = V xi -'_ Ray

where Xi is the mole fraction of constituent i. Rayleigh scattering is dependent on

total flow density, and in general can not be used to identify species in a binary mixing

field. However, in the case where the Rayleigh scattering cross section for one of the

species is significantly different from that of the other, the technique can be used to
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identify species gradients. The utility of the technique_for identification of species in

a mixture is dependent therefore upon weak changes in number density, and strong

differences in refractive index between the species. In supersonic flows, however,

due to the cooling of the gas as it expands through a nozzle, some gas constituents

may condense and form clusters73, 74. The Rayleigh scattering from clusters may

interfere with the Rayleigh scattering signal due to air molecules, thus making the

interpretation of the data difficult.

The differential cross-section for Rayleigh scattering of polarized light from a par-

ticle viewed at 90 ° to the plane of polarization is given by 75

where n is the particle material relative refractive index, i.e. :

I_partlcle

n - (2.6)
7Zmedium

In terms of the volume W of the small scatterer, the last equation becomes :

(2.7)

Hirleman 71 mentions that for visible radiation, Rayleigh scattering approxima-

tions are valid for particles diameters of d < 0.05#m; and geometric optics approx-

imations are valid for roughly d > 5/tin. According to Siegel and Howell 75, an

approximate size limit for Rayleigh scattering is that the ratio of particle radius to

the wavelength is less than 0.05 . McCartney 76 mentions that Rayleigh scattering

regime may be assumed for d v < 0.065. According to Clemens and Munga177, for

a particle diameter that is less than about ten times the wavelength of the light,

the scattering can be considered Rayleigh scattering. The particles size estimation is

done in See. 2.8.3.
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2.8.2 Planar Rayleigh/Mie Scattering

The experiments were carried-out with two kinds of "fuels" injected into the main

airstream : air and helium. The helium was used to simulate hydrogen injection. Air

was used to make preliminary runs in order to minimize the helium consumption.

Due to a large difference in the Rayleigh cross section (about 100 at 193 nm) between

the injected helium and the mainstream air, in the molecular regime, one would

expect a very low signal from the helium flow. Hence, the pure helium signal and

the background signal are of comparable magnitude 78. Outside the helium injection

region and the boundary layer, Rayleigh signals were predominantly due to clusters

which were formed as a result of cooling which takes place during the expansion

process 79. Shirinzadeh et al. 74 also pointed out that the Rayleigh signal due to

clusters is a strong function of the local pressure and temperature of the flow. The

largely differing scattering cross sections of air and helium together with the existing

signal-to-noise ratio ( see the "binning technique" in Sec. 2.5.2 ), and by applying the

technique described in Sec. 4.4.2.6, enable the helium jet in the Rayleigh scattering

images to be identified. In order to identify the air injected into the main airstream

the fog visualization technique is used, taking advantage of the large scattering cross

sections of particles seeded into the flow. Tests were conducted where the helium was

also seeded. In general, two fog visualization methods are employed 77 :

1. Product formation method

This method is particularly useful because it directly marks the mixed fluid. The

technique involves the seeding of the low speed stream with water or alcohol

vapors. When the vapor laden relatively warm fluid mixes with the relatively

cold high speed fluid, the water rapidly condenses, forming a fine fog. Because

droplets are formed only where mixing occurs, and because the similarity to a
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chemically reacting system, where two separate reactants meet within a mixing

zone to form a product, this method is called the "product formation" method

in analogy with combustion.

2. Passive scalar method

H-_ .H
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In this method the droplets are allowed first to condense throughout the entire

supersonic stream, and then to dilute by mixing with the low speed stream.

Hence, this method provides a marker that is passive in the sense that it does

not affect the velocity field.

Both methods are simple and safe to 11se.

2.8.3 Ethanol Condensation

In the present work the "fuel" was seeded with ethanol. First, water was con-

sidered as a seeding liquid_ Its relatively low vapor pressure caused an incomplete

evaporization upon reaching the injector's exit. For this reason it was changed to

ethanol, which has a higher vapor pressure than the water. It also has the added

benefit of low heat of vaporization, thus perturbing the flow less upon condensation.

The mass fraction of ethanol seeded into the "fuel" flow was about 0.003 for air

"fuel" and about 0.01 for helium "fuel" ( see Table 2.4 ). The numerical simulations

of Squires and Eaton 80 demonstrate that mass loadings of less than 1% have neg-

ligible effect on turbulence quantities in isotropic turbulence, suggesting that in the

present study the •condensate fog does not influence the turbulence. Upstream of the

injector nozzle throat the ethanol was in vapor form. As the flow expands through

the nozzle, the ethanol condenses through homogeneous nucleation, where the nu-

clei consist of small molecular clusters of ethanol. High levels of supersaturation are
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achieved because small molecular clusters ( smaller than the critical diameter ) are

not stable and evaporate. Only clusters larger than the critical size are stable and

continue to grow. Clusters of this size become more probable at higher supersatura-

tion ratios. This ratio is defined as the ratio of the vapor pressure to the saturation

pressure at the static temperature of the carrier gas. Wegener et al. 70 investigated the

condensation of ethanol in supersonic nozzles and found that once sufficient numbers

of stable cluster nuclei are formed, the condensation process takes place rapidly in

about 50#s, after which, virtually all of the vapor has condensed. There will always

be some vapor present since there is a finite saturation pressure at the free stream

conditions. The number density and the radii of ethanol droplets leaving the nozzle

exit were measured by Clumpner 81, where the droplet number densities were found

to be about 1012 - 1013 cm -3 with radii of about 50 - 100 .1 ( diameter of 0.01 - 0.02

#m ) and a Gaussian distribution with standard deviation of about 8.t (0.0008 tim).

Because the experimental conditions (Me,_t = 1.4) in the above cited work were close

to the present work (M_=it = 1.63), it is assumed that the ethanol droplets in this

study are of comparable size. As pointed out, the wavelength of the light is 266 nm

( 0.266/_m ). If the particle diameter is less than about ten times the wavelength of

light, then the scattering can be considered Rayleigh scattering, where the scattered

light increases as the sixth power of particle diameter 77. According to McCartney 76,

Rayleigh scattering regime may be assumed for dp < 0.06A. In the present study,

taking the larger diameter, dp/A = 0.02/0.266 .-_ 0.075 which is less than 0.1, but

higher then 0.06. This particle diameter is at the nozzle exit. Downstream from the

nozzle exit the ethanol droplets grow due to coalescence, and the droplets diameter

increases, favoring Mie scattering rather than Rayleigh scattering.
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2.8.4 The Motion of Ethanol Droplets

The ethanol condensation takes place in the injector nozzle and ethanol droplets

are carried out of the nozzle by the fuel jet. The jet mixes with the main air stream,

and light scattering from the ethanol droplets signals the mixing region providing the

droplets follow the jet flow. The question is how accurately these particles follow

the fluid motion and represent the flow structures. This question can be answered

by analyzing the ratio of the particle aerodynamic response time to the local flow

time scale, known as the Stokes number. Direct numerical simulations conducted

by Samimy and Lele 82, for a particle laden compressible mixing layer suggest that

for correct visualization, the Stokes number should be less than 0.5 . In the present

subsection the Stokes number for the present visualization is estimated.

If a spherical particle, of density pp, velocity U, and diameter d, is projected into

a quiescent fluid with viscosity #, and its drag can be considered Stokesian, then a

characteristic stop time tp is given by Melling 83 as

ppd 2 .

tp = 1--_-(1 + 2.7Kn) (2.8)

where the term in parentheses is a correction factor for slip, due to free molecular flow

and Kn is the Knudsen number based on particle diameter. If the ethanol droplets

are assumed to be 0.02#m and injected into air or into helium, then this characteristic

time, calculated from the above equation, is given in Table 2.5. The ratio of this stop

time to an adequate fluid mechanical time scale, %,, is the Stokes number, Sk=tp/tj,.

The fluid mechanical time scale is defined as :

5

t]- AU (2.9)

where 5 is the jet visual half thickness ( the radius of the jet ) and AU is the velocity

difference across the jet, i.e., the jet centerline velocity minus the main stream velocity.
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In a given flow t I is changing as the flow is. evolving. Therefore the smallest t l

should be used in the calculations, i.e., the time based on the jet exit characteristics.

Table 2.5 summarizes the ethanol droplet characteristics. The formulas provided by

White 84, pp.27-29, were used to estimate the mean-free-path and viscosities of the

gases ( air and helium ). The ethanol properties were taken from Wegener et al. 70.

Table 2.5 Ethanol droplets characteristics

Property In air jet In helium jet

AU m/s

_jet m

tf #s

/_m fp,gas m

Kn ( based on dp=0.02 tim )

#g_ Pa s

Pp kg/m 3

tp ItS

Sk=tp/tf

61 705

3.6 x 10 -a 3.6 x 10 .3

59 5

3.2 x 10 -s 9.2 x 10 -s

1.6 4.6

1.27 x 10 -5 1.15 x 10-s

879.3 917.3

0.0082 0.0238

0.00014 0.00476

Samimy and Lele 82 calculated the Stokes number using a fluid mechanical time

based on vorticity thickness of the shear layer. Using the incompressible result that

the visual thickness is about twice the vorticity thickness, the Stokes number based

on the visual thickness should be less than 0.25 . This condition is clearly met in

the present work for both jets for particles size corresponding to the injector exit.

Downstream from the nozzle exit the ethanol droplets grow due to coalescence, and

the diameters of the droplets increase, thus changing the characteristic stop time of
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the particles, tp. The particle coagulation is discussed in the Sec. 2.10.2.4. The effect

of coagulation on the ethanol droplets is shown in Table 2.7. The diameter of the

droplets can increase about twice the size at the jet exit plane. Even for particles

10 times bigger than the estimated size, the Stokes number is less than the limit set

by Samimy and Lele 82. It may be concluded that the visualization is correct in the

sense that the particles faithfully follow the flow.

2.9 Resolution of the Visualization Tests

This section analyzes the experimental resolution of both spatial and temporal

scales.

2.9.1 Spatial Resolution

The smallest imaged area was about 1.1 inch × 1.1 inch ( _ 780mm 2 ) re-

sulting in a discretized area of 109 /_rnx 109 #rn per pixel. The smallest scale in

the flow is the Batchelor or mass diffusion scale, As, which follows the relation :

As _ _Sc-1/2Re_/_, where 5 is the local width of the shear layer ( the diameter of

the jet ), Re_,av is the local Reynolds number based on the velocity difference of the

shear flow and 5, and Sc is the Schmidt number. Dowling and Dimotakis 85 suggest

a constant of proportionality of 12.5 . Hence :

AB 12.5 x ¢_ Sc -1/2 n-3/4
= It_5,AU (2.10)

As a means of quantifying the resolution of the experiment, the following ratio was

estimated : L/As, where L is the largest dimension of the examined volume ( here

109 #m ) and )_s is defined above. If this ratio is greater than about one, then the

amount of mixed fluid will be overpredicted since both mixed and pure fluids can



62

reside within the examined volume 21. Table 2.6 shows the resolution of the present

visualization experiments. The Schmidt numbers for each of the gas pairs ( helium-air

and air-air ) were estimated from formulas provided in Bird et al. 86, pp.19-25 and

pp.510 512.

Table 2.6 The resolution of the visualization experiments

Property In air jet In helium jet

L m 1.09 × 10 -4 1.09 × 10 -4

*j** m 7.16 × 10 -3 7.16 × 10 -3

Re_/,u 73000 115000

Sc 0.8 0.93

As m 2.25 × 10 -5 1.5 × 10 -_

L/AB 5. 7.3

rB=AB/U ns 50. 12.

The experiment cannot resolve the spatial scale. For larger fields of view the spa-

tial resolution was lower than the one mentioned in Table 2.6. Although the actual

mixed fluid levels cannot be determined at the level of a diffusion length, the mixed

fluid will be differentiated on gray scales between the minimum and maximum sig-

nals, which actually correspond to the average mixture fraction within each examined

volume, and is composed of both pure and molecularly mixed fluid.
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2.9.2 Temporal Resolution

The mean Batchelor-scale passage time is calculated based on the Batchelor's

length scale and the jet exit velocity.

_B

rB = _ (2.11)

This time scale is shown in Table 2.6. The width of the laser pulse is 10 ns, being less

then the Batchelor-scale passage time. Hence the temporal scale may be considered

resolved for air injection, but may not have been enough for helium injection.

2.10 Experimental Errors and Noise in

Visualization Tests

Noise appears as random variation of the registered signal about an average

value, either in time, or in space. These fluctuations obviously limit detectivity. It is

therefore important to understand their origin, and to decrease their effects.

2.10.1 Noise Sources from the Test Facility

Problems during acquisition of the images included radio frequency noise from the

laser and acoustical noise and vibrations from the facility. To minimize these effects

the camera was wrapped first in aluminum foil and then in foam. The aluminum foil

shielded the camera from the laser interference, while the foam damped the vibra-

tions caused by the flow as it discharged to the laboratory. The rails on which the

camera was mounted were secured with braces and weighted down with sand bags

and weights, to reduce the mechanical vibrations transmitted to the camera. How-

ever, acoustical noise effects on the images could not be completely eliminated, and
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from time to time, increased noise levels were experienced during data acquisition.

Re-initialization of the camera (switching it off and then back on) eliminated the

problem.

2.10.2 Noise Sources in Image Acquisition

Errors associated with the image acquisition are of five categories : marker shot

noise, stray light, light sheet nonuniformity, fog nonuniformity, and camera noise.

2.10.2.1 Marker shot noise

Marker shot noise is discussed by Rosensweig et al.87 and is due to the fact that

there is a finite number of markers within the probe volume and this number varies

with time. The signal to marker shot noise ratio is :

N

SNRm_rt:_rshot - Nrms - Nlj2 (2.12)

where Nrm_ is the rms marker shot noise and N is the average number of markers

within the measurement volume. For the present case, assuming a number density of

1012 cm -3 ( corresponding to droplets of d _ 0.02 #m ), and using the volume imaged

per pixel ( 0.109 × 0.109 × 0.5 mm 3 ), the expected signal-to-noise ratio is about

2000. Since this signal-to-noise ratio is very high it is not the dominant noise source.

2.10.2.2 Stray light noise

Although every effort was made to eliminate stray light, it was impossible to

completely eliminate this problem. In order to obtain an estimate of stray light

levels, an image was acquired that had a small portion of the light sheet blocked,

thus introducing a shadow in the image. After subtraction of the background image,
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intensity levels on the order of 10% of the freestream value existed in the shadow

region where zero intensity levels would be expected.

2.10.2.3 Light sheet nonuniformity noise

The third source of error in the acquired images was due to laser light sheet

nonuniformity. The method described in the image processing Sec. 4.4.2.3, greatly

reduced these errors, although the correction was not always perfect.

2.10.2.4 Fog nonuniformity noise

The fourth souce of error is fog nonuniformity. The ethanol droplets are formed

within the injector nozzle and then injected into the main stream, where they grow

due to coagulation ( coalescence ). The droplets which come out the nozzle are

fairly uniform. For conditions very similar to the present study, Clumpner 81 found a

Gaussian distribution of condensed ethanol droplets with a mean diameter of about

0.02 _m and a standard deviation of 0.0008 gm. As the fog convects downstream the

droplets size increases causing an augmentation in the light intensity. Thus the light

intensity across an ethanol seeded side image changes due to the change of the droplets

diameter. Fuchs 88 models the coagulation of aerosols by assuming the droplets can

be described by Brownian motion superimposed on the bulk flow The droplets are

assumed to coalesce upon every collision with other droplets, and the number density

is expressed as :

No
N- 1 + KoNot (2.13)

where N is the number density, No is the initial number density, K0 is the coagulation

rate constant, and t is the time. The rate constant K0 increases as the particle size

decreases. A rough estimate of the effect of coagulation can be made by using the
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values of K0 tabulated in the book by Fuchs 88. If the droplets exit the nozzle with

d=0.02 gm and No = 1012 crn -3, with a rate constant of K0 = 34 × 10 -l° crn3/s,

as they travel from the nozzle exit about 1.5 inches downstream ( from the injector's

exit to the end of the side view visualization plane ) they will have grown to about

0.021 gm with a resulting increase of about 5% in the scattered light from one side to

the other. Both turbulence and strong acoustic fields act to increase the coagulation

rate beyond the predictions based on Brownian motion. Very high sound levels and

high number densities typically augment the coagulation rate by less than an order

of magnitude. In the present work, both strong acoustic fields and high number

densities were encountered suggesting that this effect may be important. Taking

the rate constant, K0 to be one order of magnitude higher than the value given by

Fuchs 88, i.e. K0 = 34 × 10 -9 cm3/s, the effect of coagulation on the ethanol droplets

is given in Table 2.7.

For the side view visualization plane, the table shows an increase of about 57% in

the particle diameter from the jet exit to the downstream edge of the field of view for

the air jet. For the helium jet, the increase is only about 27% . Turbulence enhances

coagulation by increasing the relative motion between particles. For particles that are

small relative to the turbulent microscales, and move with the gas, the enhancement

of coagulation due to turbulence is proportional to the third power of the particle

diameter and the square root of the dissipation rate 89. For the present conditions,

the turbulence influence on droplet coagulation can be ignored.

In conclusion, these approximate estimations suggest that there is a non-negligible

increase of droplets diameter across a side view resulting in a corresponding increase

in the scattered light. About the same amount of light intensity increase across a side

view was observed in the acquired images, and it proves, indirectly, that the ethanol
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Table 2.7 Effect of coagulation on ethanol droplets characteristics

Rate constant of K0 = 34 × 10 -9 cm3/s

Distance from the

injector exit

In air jet In helium jet

U_:it=449 m/s U_it=1213 m/s

x x/d x/h

m

t s N d_ t s N

×1011 ×10 n

_t s cm -3 /_ m # s cm -3

4

_m

Comments

0 0 0 0 10 0.02 0 10 0.02

0.0122 1.7 0.75 27 5.2 0.0248 10 7.5 0.0220

0.0381 5.3 2.3 85 2.6 0.0314 31 4.9 0.0254

0.0630 8.8 3.9 140 1.74 0.0359 52 3.6 0.0281

0.1138 16 7 253 1.04 0.0425 94 2.4 0.0323

0.1646 23 10 367 0.74 0.0476 136 1.78 0.0356

Jet exit plane

No extension walls

Side view edge

2" extension walls

4" extension walls

6" extension walls

droplets size are about the size that was initially assumed.

2.10.2.5 CCD Camera Noise

The fifth source of error came from the CCD camera. First of all there are man-

ufacturing non-uniformities, i.e. defects that locally affect the quality of the sensitive

surface, e.g. isolated pixels with higher dark current than their neighbors (hot spot),

or insensitive pixel (dark spot). The camera used in this study passed the manufac-

turer's quality tests, the number of defective pixel being within the manufacturer's

tolerances. Image processing techniques (cosmetic corrections) can diminish these

effects. Camera noise is comprised of three components : electronics, dark current,
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and photonic.

1. The CCD is used with additional electronics that amplify the video signal and

then digitize it for computer processing. The circuits themselves introduce noise.

The preamplifier noise is generated by the on-chip output amplifier. This noise

is very low, of the order of a few electrons, and is negligible. The only noise taken

into consideration is due to the quantification error during signal digitization.

For the 16 bit A-to-D converter used in the present work, and following the

analysis of Bui190, pp.45-46, the quantification noise is about four electrons.

Therefore this noise is also negligible in the present application.

2. The dark current noise is the charge that accumulates from thermal generation

at finite temperatures. It is called "dark" because it accumulates even with

the shutter closed and the camera in complete darkness. This dark current is

composed of a mean current and a thermal current noise. The mean thermal

level is an offset which is simply added to the useful signal. This thermal signal

; ii__

may be removed from the data during the processing, by a simple subtraction.

The thermal signal's value is spatially dependent. The thermal noise is the

random component of the thermal signal that reduces the certainty about the

true level of the signal. Because the camera is actively cooled ( to -45°C ) this

thermal level and thermal noise is very low, but is a particular concern in very

low light applications not applicable in this experiment. Both preamplifier and

dark noise remain constant at different light levels.

3. A noise that is extrinsic to the CCD is the so-called "photon noise". It originates

in the quantum ( corpuscular ) nature of the light. The arrival of the photons

follows a Poisson distribution. The value of this noise is equal to the square root
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of the average number of the electrons that are collected during the integration

( = charge accumulation ) time, and is equal to the square root of the signal

produced by the CCD ( the light level ). This noise is simply the uncertainty

in the data. It is lower at low light levels, but comprises a higher proportion of

the total signal. For high levels of light, as in the images taken with the flow

on, the preamplifier noise and the dark noise are much lower than the photon

noise, and the CCD is photon noise limited.

In conclusion, the CCD camera noise can be divided into two major components :

the signal ( photonic ) noise and the readout noise. The readout noise includes all

the noises that are not related to the signal, like thermal current, cosmetic defects,

electronic noise. This readout noise can be estimated by measuring the fluctuation

of the signal coming from a given pixel on a large number of successive images taken

in complete darkness. At the begining of each run, a sequence of ten images taken

in complete darkness ( so-called background images -- see Sec] 2.6.2 ) was recorded

and then analyzed to obtain the fluctuations r.m.s, and to estimate the readout

noise. The readout noise was about 1% of the signal level. Such a level shows that

the camera noise is controlled by the signal intensity level ( photonic noise ), and is

indicative of the high quality of the CCD. Indeed, the signal-to-noise ratio of a perfect

sensor is linked only to the statistical fluctuations of the number of photons received

per unit of time 90. A signal-to-noise ratio ( SNR ) in the range of 40-50 existed in

the seeded images at typical laser light sheet intensities.
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Chapter 3

i N

NUMERICAL COMPUTATIONS

A numerical study which closely tracked the experimental effort, was undertaken

to enhance the understanding of the experimental data, and to point out trends for

improving the mixing enhancement techniques.

3.1 Computer Code

:i

H_]

The computer code used in this study was one of the SPARK family of codes

developed at the NASA Langley Research Center, Hampton, VA, USA. The particu-

lar SPARK code employed was the low storage version of the SPARK3D code which

solves the full three-dimensional unsteady Navier-Stokes equations together with ap-

propriate species continuity equations. A chemical source term may also be added to

include the effects of finite-rate chemistry, however, this feature was turned off because

the purpose of the computation was to simulate the cold flow experiments. A Baldwin

and Lomax 91 algebraic eddy-viscosity turbulence model was included with the code.

Eklund et al. 92 implemented the Eggers 93 mixing length model for the jet region of

the flow. The code was advanced in time using a compact, spatially fourth-order ac-

curate, symmetric, predictor-corrector algorithm until steady-state convergence was

obtained. The code has been used to predict reacting and non-reacting flows of dif-

7O
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ferent scramjet combustor injection schemes by Drummond 94, Eklund et al. 92,95,

Riggins et al. 24-26, Northam et al. 23, Waitz 32, Donohue et al. 29.

Three cases were simulated in this study to allow direct comparison with the

experiments, and these are as follows :

!. Simulation of the Mach 2 main air flow with the jet off, to study the ramp's

influence on the flow.

2. Simulation of an air jet injected at Mach 1.63 from a circular nozzle into the

Mach 2 main air flow.

3. Simulation of an helium jet injected at Mach 1.7 from a circular nozzle into the

Math 2 main air flow.

3.2 Governing Equations

The governing equations solved by the SPARK code are presented below. For

three-dimensional flows, the continuity, momentum, energy and species equations can

be expressed in the strong conservation form in the Cartesian coordinates as 99

0U OE OF 0G

0---[ + -_x + -_y + Oz - H (3.1)

2 For i = 1,..., (Ns - 1), the vectors of the conserved variables are as follows :
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V _

P

pu

pv

pw

ps

PYNs 2

(3.2)

E

F

pu

pu 2 - az

.Ouv -- 7"xy

puw - rzz

(pE - a_)u - v_yv - r_zW + q_

(u +

PYNs (u + UNs )

pv

puv- Vzy

pv 2 -- Cry

pvw - ry_

(ps - ay)v - rxyu - 7"u_w + qu

PY1 (v + vt )

(3.3)

(3.4)

PYNs( v "[- ?)Ns ) /
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where :

G

H

pw

puw - rxz

pvw - T_z

flW 2 -- Orz

(p_ - _)w - rx_u - r_v + qz

pY_(w + ax)

o

N_
P _=1 Y_b_

N_
pE_=I Y_b_(u+ fi_)

tbl

_Ns

_u

_ = -p + 2#-ff_x + A_7. u

Ov

_ = .p + 2tt_x + A_7. u

Ow

o_ = -p + 2tt-ff_x + AV . u

ov)
r_ = # +

_-_= _ _ + -5;

(3.5)

(3.6)

(3.7)

(3.s)

(3.9)

(3.1o)

(3.11)

(3.12)
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Ys N_ N_ XjD T
q_ = _ t_.__x + P _ h i Yi £ti + R,, T _-_ _--_ _ (_tiOT ftj ) (3.13)

i=l i=1 3=-1

OT Ns Ns Ns F TXjD i ..

i=1 i=1 j=l

Ns Ns N_ XjD TOT

i:1 i=1 j=l

(3.14)

(3.15)

Ns _ U 2 "+ "02 -t- W 2
6 = _ hiYi - p + (3.16)

t=l P 2

Ns Yi
p - pR_T _ M_

i=l

(3.17)

hi = h_ + RCv, dT (3.18)

Cp__ _ Ai + BiT + C_T 2 + DiT 3 + EiT 4 (3.19)
R_

Only (Ns 1) species equations were considered in the formulation since the mass

fraction of the species which was left out was prescribed by satisfying the constraint

equation
gs

Yi = 1 (3.20)
4=1

which was obtained from mass conservation. Coefficients in the specific heat at con-

stant pressure expression were taken from McBride et al. 96. Knowing the specific

heat of each species, the enthalpy of each species can be found, and then the sum of

the internal and kinetic energy is computed as

Ns _ U2 + v 2 + w 2
e = Y_ hiYi - p + (3.21)

i=l P 2

The individual species viscosities are computed from Sutherland's law :

# __ (T_3/2 To-_ - s

,o- T +S
(3.22)

where p0 and To are reference values and S is the Sutherland's constant. All three

values are tabulated for the species used in this study 84,97 The species thermal
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but with different values of the reference values _0 and To, and the Sutherland's

constant S. Additional data on different properties was obtained from Arp 98.

The multicomponent diffusion equation for the diffusion velocity of the i th species is

expressed as

= \ Oij ] (fij-fil)+ _--_Y/Yj(bl- bj) + (Y_-Xi) +
"---- j=l

\ P---_---7-/_/_] Y_ Y/] (__T_) (3.24)
j=l

where

ai = + + sit (3.25)

In the diffusion equation, it is assumed that the body force vector per unit mass is

negligible (hi = 0.0, i = 1,... Ns). In addition, the thermal diffusion coefficient, D T,

is considered to be negligible in comparison with the binary diffusion coefficient, T_i¢.

The above equation was applied to only (Ns - 1) species. The diffusion velocity for

the species that was left out was prescribed by satisfying the constraint equation

Ns

_--_Y_fii =0 (3.26)
i=l

The governing equations are expressed in terms of the generalized coordinate trans-

formation, and are then solved in the computational domain 99-101.

3.3 Turbulence Modeling

The flow considered in this study was turbulent with separated regions. This type

of flow is very difficult to model reliably even with the most sophisticated turbulence
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models. While the turbulent fluctuations are not resolved, their effect upon the

mean flow is modeled by solving the Reynolds-averaged Navier-Stokes equations.

These equations include additional terms : the Reynolds stresses, heat flux and mass

flux terms, that represent the effect of the turbulent fluctuations upon the mean

flow. The turbulent stresses are calculated through the eddy viscosity ( Boussinesq )

approximation that relates the turbulent stresses to the mean rate of strain by a

_ii!_i_,_,_

coefficient, called the eddy viscosity coefficient. This approximation assumes that the

transport of fluid properties due to the motion of turbulent eddies is analogous to

the effect due to molecular motion. Turbulence is then modeled as an increase in the

transport coefficients, and the Reynolds-averaged equations become similar to the

Navier-Stokes equations, except for the modifications to the transport coefficients.

The effective transport coefficients take the form

# = _tt + #t (3.27)

C #l #t
k = v_--_rl + G_-_r t (3.28)

p:D = g__L #__L (3.29)
Sct + Sct

The eddy viscosity coefficient, _tt, is evaluated as

gt = c p UL (3.30)

where c is a constant, U is a velocity scale and L is a length scale. However, U and

L are properties of the flow rather than properties of the fluid. In this study two

algebraic models were considered, namely the Baldwin-Lomax model and the Eggers

model, so that the velocity and length scales were evaluated from the mean flow. The

Baldwin-Lomax model 91 is extensively used for wall bounded flows. In this model,

the velocity scale is based on the vorticity distribution and the length scale on the
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distance from the wall. The Baldwin-Lomax-treatment of the wall boundaries is

combined with a turbulence model for the jet based on the Eggers length model 93

mixing. This approach was used by Eklund et al. 92 and by Chitsomboon et al. 102 to

model the turbulence of a jet in a supersonic mainflow. The velocity scale is defined

as the velocity in the jet's core with the constant c=0.0164 as given by Eggers 93. The

length scale is the average of the half-width of the jet in the spanwise and normal

directions. The concentration of the injectant was used to determine the half-width.

Smooth transitions are enforced at the boundary of the jet and at the edge of the

wall boundary layer. In all calculations, the turbulent Schmidt and Prandtl numbers

were set to constant values of 0.5 and 0.9 respectively, and the turbulent viscosity

was limited to 1000 times the laminar viscosity 92.

3.4 Numerical Technique

The original code, developed by Drummond et al. 99,100, solved the two-dimensional

set of equations. This code was subsequently modified, by Carpenter 101, to solve

the three-dimensional set of equations while making efficient use of memory. This

low memory version of the SPARK code provides two algorithms for solving the

Navier-Stokes equations. The first algorithm is the original unsplit explicit technique

of MacCormack which is a two-step predictor-corrector scheme. The algorithm is

second-order accurate in both space and time. The second algorithm is the steady

state Cross-MacCormack algorithm developed by Carpenter 101. This algorithm is

derived by replacing the one-sided difference operators in MacCormack's predictor-

corrector scheme with compact difference operators. The algorithm, while formally

still second-order accurate in space and time, attains fourth-order spatial accuracy
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at steady state. To illustrate, consider a central difference approximation to the 2-D

differential equation

Ut + E_ + F_ = 0. (3.31)

With the central-difference operators _ and 82 defined as

_Ei,j = Ei+I,j -Ei_I,j (3.32)

one can write

62xEi,j = Ei+I,j - 2Ei,j + Ei_l,j (3.33)

= S---_E Ax2 E
E_ 2Ax _. _ + O(Ax4)" (3.34)

Transfering the second term on the RHS to LHS and rearanging, one obtains

or

Similarly,

(1 + . )E_ - 2Ax + O(Ax4) (3.35)

82._ -

6_ E/(1 + + O(Ax4). (3.36)E.- =-,)
2Ax

F_ _ F/(1 + 6_,_.
= 2A---_ --_-._) + O(Ay4)" (3.37)

i_ii.:_

Substituting Eqs.(3.36) and (3.37) into Eq. (3.31) yields

62_ 8_
(l+_._)(l+_)Ut=. -(1+_). 2Ax6XE-(I+-_-._)2---_yF+O(Ax4'AY4)" (3.38)

Omitting the implicit differencing on the left hand side of the equation, which requires

tridiagonal matrix inversion, then is obtained

c

6,
02_) E-(1 + FUt = -(1 + -;T)x-_-- + O(Ax2, AY2) • (3.39)
3! 2Ax a., zzay

7. :i :
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The algorithm given by Eq. (3.39), while formally second-order accurate, attains

fourth-order spatial accuracy at steady state. Similarly, the Cross-MacCormack al-

gorithm applied to Eq. (3.31) is implemented as

AUi,j -
At _2_

_x [(l + __. )Ei+l,j_ Ei,j] _ At _2z_--_y [(1 _---_.)Fi,j+l-Fi,j]

At[ _2y . ] At[ _2x .

o 1[ ],,3 = Ui,j + _ AUi,j + AUi*,j . (3.40)

For both algorithms only three planes of data need to be stored simultaneously.

These planes correspond to the forward predictor and backward corrector planes

around the grid point evaluated. The low storage version of the code generally requires

about five time less storage than the full SPARK3D code, and is about 20% slower.

Fourth-order artificial viscosity, based on gradients of pressure and temperature, is

included in the solution algorithm to suppress numerical oscillations in the vicinity

of shock waves.

3.5 Computational Grids

The grid used in the calculations was generated externaly to the SPARK code

and is shown in Figs. 3.1-3.3. The grid is a body fitted grid, hence the ramps can

be modeled accurately. The entire domain, including the ramps, was gridded and

then the injector ramp was formed by blanking out a region of the domain. The

blanking was performed within the code by setting the velocity equal to zero at all

points within the ramp, and applying appropiate boundary conditions on the walls of

the ramp and the injection plane. The grid consists of a number of separate zones in

which the nodes were clustered at one or more of the zonal edges so that large flow
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gradients near the boundaries and the planes defining 4he injector could be resolved

without excessive computational expense. The functions for grid stretching, were

taken from Anderson et al. 103, pp.247-251. Details of the zonal boundaries and

stretching parameters are given in Tables 3.1 - 3.3. The dimension of the grid is 109

points in x, 69 in y, and 67 in z-direction, a total of 503,907 points. Table 3.4 shows a

comparison between the grid used in the present study and grids used in other works

done on swept-ramp injectors.

3.6 Boundary Conditions

The inflow boundary conditions were determined from the reservoir conditions,

assuming slug flow, and were chosen to match those of the experimental studies. The

velocity, pressure, temperature, and concentrations were specified. Using the fact

that the experimental duct is symmetric, only half of the duct was modeled, and the

symmetry conditions were applied at the center plane. Along solid walls, the no-slip

and no-penetration conditions were imposed, together with assumptions of a zero

normal pressure gradient and a zero normal total-temperature gradient (adiabatic

walls). The bottom wall, top wall, and ramp surfaces were treated in this manner.

However, the side wall was treated as an inviscid wall by setting only the normal

velocity equal to zero, because the grid resolution on this wall could not resolve the

boundary layer, causing instabilities in the solution. This treatment was not expected

to appreciably affect the accuracy of the solution in the vicinity of the jets. The flow

variables at the exit plane boundary were extrapolated from the interior assuming a

zero gradient at the exit plane.
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Table 3.1 Zonal boundaries and stretching parameters for x-direction

x-direction Length fl a Comments

grid nodes mm.

1 - 47 91.06 1.009 0.5

47- 65 16.00 1.03 0.5

65- 91 102.62 1.25 0.5

91- 109 42.41 1.02 0.0

ramp region

Table •3.2 Zonal boundaries and stretching parameters for y-direction

y-direction Inlet plane Injection plane Exit plane

grid nodes Length fl a Length _ a Length _ a

mm. mm. mm.

1 - 12 20.86 1.435 0.5 4. 1.93

12 - 22 4.1 1.05 0.0 4.9 1.0945

22 - 52 1.92 uniform -- 34.04 1.0255

52 - 62 4.1 1.05 0.0

62 - 69 12.92 1.395 0.5

52 - 69 0.96 1.02

1 - 69

0.5

0.0

0.5

0.0

43.9 1.25 0.5
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Table 3.3 Zonal boundariesand stretching parametersfor z-direction

z-direction

grid nodes Length

mm.

Inlet plane Injection plane i = 91plane

Exit plane

1 - 26 0.20

26 - 67 38.40

1 - 67

/_ a Length _ a Length _ a

mm. mm.

1.0015 0.0 16.256 1.0445 0.5

1.00605 0.5 22.352 1.045 0.5

38.60 1.0067 0.5

38.60 1.0044 0.5

ii -

Table 3.4 Grids comparison

Present Eklund Riggins Waitz 32

study et al. 95 et al. 24

Type Body fitted Body fitted Cartesian Cartesian

x ram. 252.1 _ 419.1 140. 500.

Nx 109 151 87 100

Y mm. 43.9 21.2 44. 25.4

N_ 69 43 61 27

z mm. 38.6 38.1 38. 88.9

N_ 67 79 61 45

Ntot 503907 512947 323727 121500

Average cell volume mm 3 0.848 0.660 0.723 9.292
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3.7 Iteration Technique

First, the computations were started without fuel injection at the ramp base

( downstream-facing step ) by setting the flow quantities in the domain equal to their

values at the inflow plane. However, behind the ramp a linear profile in velocity

was assumed. Initially, the turbulent model was turned off, and a laminar flow was

computed. The solution was advanced in time using a local time step calculated by

combining the convective and the diffusive time scales. The Courant number and

the artificial viscosity coefficient were initially set equal to 0.1 and 1.5, respectively.

After 33,000 iterations with approximately 6.8 cpu seconds per time step ( on a CRAY

Y-MP computer ), the fuel jet was turned on by setting the appropriate conditions

on the plane surface of the downstream-facing ramp base. After 8000 iterations of

laminar flow, the turbulence model was turned on. The Courant number and the

artificial viscosity coefficient were graduMly changed to 0.5 and 0.5 respectively. For

this case approximately 8.8 cpu seconds per time step were required to advance the

computations on a CRAY Y-MP computer.

The residual is defined as the maximum change in the non-dimensional density

between successive iterations, and is expressed as :

Pt -- Pt-At

Pt

where pt means the density at time step "t'.

converged when the residual was below 0.5 % .

(3.41)

The computations were considered

In addition, the flowfield variables

were monitored to ensure steady-state was achieved.



Chapter 4

DATA REDUCTION AND

ANALYSIS PROCEDURES

This chapter describes the procedures to reduce the flow field survey data and

the image processing procedures. Also, the experimental and computational data

analysis procedures are described.

4.1 Matrix of Experimental Cases

This section is devoted to presenting a tabulation of the test cases studied both

by visualization and flow field probe survey. Table 4.1 displays the visualization

experiments cases and Table 4.2 shows the flow field survey cases. The cases that

were tested are marked by an "X". A total of nine different cases were tested.

4.2 Reduction of Flow Field Survey Data

The raw data ( p, ot_t, pco,_e, To ) were reduced to obtain fundamental variables ( M,

p, p, T ). The reduction procedure relied on several assumptions and approximations

which had no uniform validity throughout the flow field. Assuming inviscid flow

87
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Table 4.1 Visualization-Experiments Matrix

No. Nozzle inserts

Cross-section views

Main Injectant 0" 2" 4" 6" Side

Flow x/d=l.7 x/d=8.8 x/d=16, x/d=23, views

x/h=.75 x/h=3.9 x/h=7, x/h=10.

OFF Ethanol seeded air X X X

1 Circular Helium X X X

nozzle Ethanol seeded air X X X X X

ON Ethanol seeded helium X X X X X

Helimn X X X X X

OFF Ethanol seeded air X X X

2 Nozzle with Helium X X X

three steps Ethanol seeded air X X X X X

ON Ethanol seeded helium X X X X X

Helium X X X X X

OFF Ethanol seeded air X X X

3 Nozzle with Helium X X X

vortex Ethanol seeded air X X X X X

generators in ON Ethanol seeded helium X X X X X

x orientation Helium X X X X X

OFF Ethanol seeded air X X X

4 Nozzle with Helium X X X

vortex Ethanol seeded air X X X X X

generators in ON Ethanol seeded helium X X X X X

cross orientation Helium X X X X X

OFF Ethanol seeded air X X X

5 Tapered nozzle Helium X X - X

with horizontal Ethanol seeded air X X X X X

throat slot ON Ethanol seeded helium X X X X X

Helium X X X X X

OFF Ethanol seeded air X X X

6 Tapered nozzle Helium X X X

with vertical Ethanol seeded air X X X X X

throat slot ON Ethanol seeded helium X X X "X X

Helium X X X X X

OFF Ethanol seeded air X X X

7 Elliptical nozzle Helium X X X

with horizontal Ethanol seeded air X X X X X

major axis ON Ethanol seeded helium X X X X X

Helium X X X X X

OFF Ethanol seeded air X X X

8 Elliptical nozzle Helium X X X

with vertical Ethanol seeded air X X X X X

major axis ON Ethanol seeded helium X X X X X

Helium X X X X X

OFF Ethanol seeded air X X X

9 Trapezoidal Helium X X X

nozzle Ethanol seeded air X X X X X

On Ethanol seeded helium X X X X X

Helium X X X X X
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Table 4.2 Probes-Experiments Matrix

Nozzle

inserts

Cross-sections

0" 2 I' 4" 6"

x/d=l.7 x/d=8.8 x/d=16, x/d=23.

x/h=.75 x/h=3.9 x/h=7, x/h=10.

Circular

nozzle X X X X

Nozzle with

three

steps

X X X X Jet

Nozzle with vortex

generators in

x orientation

X X X X

Nozzle with vortex

generators in

cross orientation

X X X X and

Tapered nozzle

with horizontal

throat slot

X X X X

Tapered nozzle

with vertical

throat slot

X X X X main

Elliptical nozzle

with horizontal

major axis

X X X X

Elliptical nozzle

with vertical

major axis

X X X X flow

Trapezoidal

nozzle X X X X

Flow

conditions

89

10 Not applicable X X X X

Main flow

only -

jet off
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about the cone of the static pressure probe, with a conical shock of uniform strength

attached to the tip of the cone, results in a conical flow pattern [ Shapiro 104, pp.653-

654 ]. This flow is tabulated for zero angle of attack 105,106. For a given gas, i.e.

given -_ and gas constant R, the following relation is obtained :

Poo - func(Moo,Oco,_) (4.1)
PCOnC

For a known 0co_e, the above relation becomes :

poo = F(Moo + measured quantity) (4.2)

For the total pressure ( Pitot ) probe the following assumptions are made :

ii : •

1. The shock wave which stands ahead of the mouth of the tube, is locally normal

to the stagnation streamline.

2. The flow of the stagnation line is brought to rest isentropically in the subsonic

region aft of the shock.

3. The ratio of specific heats, % is a constant.

These assumptions result in the Rayleigh supersonic Pitot-tube formula which is given

as follows [ Shapiro 104, pp.153-154 ] :

1

[2"/]!"42 "1'+1]Poo L_+I ""oo -- _-1
-- _7_ (4.3)

Ptot,_l [_+IML ] "_-,
t 2 J

For a given gas, i.e. given 7, the above relation may be expressed as :

poo = G(Moo + measured quantity) (4.4)

The intersection of F and G defines the unique values of po_ and Moo which satisfy the

measured quantities. The procedure to reduce the data was based on a root-bisection
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iteration in M_ on the difference F - G . At each iteration step, the conical flow

solution was obtained from three points interpolation in the tables given by Sims 105

for zero angle of attack. The procedure was calibrated in a straight duct flow.

4.3 Presentation of the Flow Survey Data

Each run consisted of measuring a two-dimensional plane. The four measured

planes are shown in Fig. 4.1a. The x-distance shown in the figure was measured

from the injector exit centerline. The surveywas completed over half duct only. The

sampling grid is shown in Fig. 2.6. It consisted of 168 points within the region of

interest. Each probe ( Pitot, static pressure, and total temperature ) was passed

through the same point. Passing each of the probes through the same point in space

required extension of the survey beyond the bounds of the grid. Further, since it

was necessary that the measurements from each of the probes be acquired at the

same physical location in space, the spacing of the grid in the spanwise direction ( y-

direction ) had to be evenly divisible into the spacing between the probes themselves.

The rake was stopped at each grid point as shown in the algorithm of Sec. 2.6.1.

The raw data was reduced as described in the preceding section, and then it was

mirrored about the symmetry plane. After being mirrored the data was contoured

with Tecplot 107, a graphic software package.
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1.52"

.9t

Y////////////////////////

x/d

x/h

h=0.639"

a. Cross-section visualization

"//'///////_ _///////,_,

and probes measurements planes

_//.///////'/////////////,,'A

b. Side-view visualization plane

Fig. 4.1 Flow field survey planes
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4.4 Image Processing

Image processing was used to enhance and analyze digital images. Image acqui-

sition and processing systems typically consist of the following components :

i!

.... ' IMAGE
,'SCENE ,: _ ACQUISITION
L ...... j

IMAGE
PROCESSING I IMAGE_- DISPLAY

Image acquisition devices convert a continuous ( analog ) scene into a numerical

representation ( a digital image ) of that scene so that it may be processed by a

computer. Image processing is then employed to perform two tasks : one is to pro-

duce improved digital images ( image enhancement ), and the second is to generate

quantitative data about the objects within the image ( image analysis ). Finally, the

image display component provides a means to output the resultant image on a screen

or on a hardcopy.

This section describes the image processing procedures that assist in interpretation

and in extracting useful information from the CCD images. Image processing was

carried out on a SUN workstation using the PV-WAVE, an image processing software

package by Precision Visuals, Inc. 108, and KBVision, an image processing software

by Amerinex Artificial Intelligence,Inc. 109.

4.4.1 Image Processing Terminology

A digitized image is represented by a two-dimensional array, I(x,y), where x and

y denote the spatial coordinates, and the value I(x,y) is the brightness or intensity

function. If I(m,n) is used, m represents the x-direction index and n, similarly, is the

y-direction index, and M and N denote the maximum value of m and n respectively.
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The smallest unit that is addressable in an image is defined as a picture element or

pixel. The digital value of each pixel represents its intensity value. Images of this

form are known as sampled or raster images, because they consist of discrete grid

samples. The resolution, or the spatial sampling, determines the intervals at which

the scene is sampled to acquire a good approximation of that scene. The greater

the resolution, the greater the detail. In this study, the resolution of the images was

256 × 256 pixels. Brightness quantization imposes a limit on the number of discrete

grey levels that a pixel value may be assigned. The acquisition system used 16 bits

per pixel, thus yielding 65536 different grey levels for each pixel. During the image

processing the pixel values were scaled down to 8 bits per pixel, thereby allowing each

pixel to have up to 256 different values at any one time. On this scale, zero value

represents black, and 255 represents white.

4.4.2 Image Enhancement

Image enhancement is necessary because of the degradation of the image data,

usually introduced during the image acquisition process. The CCD is affected by

different noise sources which are superimposed on the image, and are filtered-out

by different image enhancement techniques known as "filters". The optical sys-

tem can also deform the image ( geometric distortion as in the cross-section im-

ages ). Image processing helps to compensate for these deformations and to restore

the original geometry. The image enhancement techniques are primarily a series of

"image in image out" processes, during which the visual appearance of the image

is modified and improved. The following paragraphs describe the corrections and

enhancements applied to the images.
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A CCD image is rarely completely free from artifacts such as defective pixels

and bright spots. The laboratory air contained a large number of dust particles

which were highlighted by the laser light sheet, and thus seen as bright spots in the

background and reference images taken in still air ( no flow ). Since the light sheet

did not change intensity level abruptly from one pixel to another in an image, any

small region of considerably higher intensity value than the surrounding p_xels _n iJ_e

average reference images was identified as a dust particle. Dust particles typically

occupied only one pixel. Occasionally they would occupy two to four pixels. The

closest non-dust pixel value was used to replace the bad (dust) pixels.

4.4.2.2 Thermal current and background illumination

To remove undesirable background illumination levels and thermal currents, a

sequence of ten background images was acquired with no flow, the light sheet blocked

from reaching the model, and the CCD in complete darkness. An average background

image was computed, dust particles removed, and then this average background image

was subtracted from all images. As mentioned before, the thermal current and the

background illumination are spatially varying and the thermal noise is random in

nature. Thus, subtracting an average background image from an instanteneous image

did not remove all the thermal-current and background-illumination effects, but the

residuals were minimal.

4.4.2.3 Flatfielding

The laser light sheet was non-uniform, therefore variations in the CCD output,

which were due to this non-uniformity, may inadvertently could be interpreted as
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variations in flow characteristics. In addition, the relative sensitivity of the individ-

ual elements that form the CCD detector mosaic was not uniform, adjacent pixels

not reacting in the same way to identical incident photon flux. Correction of these

non-uniformities was obtained by dividing the acquired image ( after subtracting the

background image ) by another image ( a reference image ) made on a uniform field

of view a flat-field. This reference image was acquired with the light sheet at the

model, but with the flow off, thus having an uniform density and temperature back-

ground. An average reference image was computed from a sequence of ten reference

images acquired this way, and with the dust particles removed. Then, the average

background image was subtracted from this average reference image, thus obtaining

the reference image for flatfielding the acquired images. If I(x,y) is the image to

be corrected for non-uniformity, F(x,y) is the fiat-field, and B(x,y) is the average

background image, the processed image will be E(x,y) :

E(x,y)- FB I(x,y)- B(x,y) (4.5)
F(x,y) B(x,y)

The value of FB is equal to the average intensity of the flat-field minus the

background, i.e. : average(F- B). The distribution of light intensity in the light

sheet varied from one laser shot to another, therefore, flatfielding an instanteneous

image with a reference image averaged over many shots did not remove all the effects

of the nonuniformity of the light sheet_ but the residual effects were minimal.

4.4.2.4 Geometric corrections

The cross-sectional view images were also corrected for distortion due to the

camera and mirror angles. First a grid image was acquired with a grid made of graph

paper placed in the field of view of the CCD under conditions identical to those of
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the image to be processed, i.e., the same setting of the CCD and the optics. This

grid had a perspective distortion because the camera was looking sidewise through a

fiat mirror and not perpendicular to the grid plane. The correction was accomplished

by introducing a correspondence between the acquired grid and a reference perfect

grid with approximately the same size as the acquired grid. The correspondence

was obtained interactively by selecting a point in the recorded image grid and then

pointing to the corresponding point in the perfect grid image for the number of points

specified -- usually four points. The transformation thus obtained was then applied

to any appropriate image. The transformed image looked as it would have appeared

in a perpendicular imaging arrangement.

4.4.2.5 Filtering

The Rayleigh scattering images ( pure helium injection into the main air stream)

were very noisy: In order to separate the useful information from the noise, a non-

linear filter was used. The chosen filter was the median filter. A matrix (known as

convolution mask ) was moved in the image. The amplitude of the point situated

in the center of the mask was replaced by the median value of the sampling points

located under the mask. The median value was determined by sorting the sampling

points according to increasing intensity. The median value was then equal to the

intensity of the point at the center of this sorted sample. The two remarkable prop-

erties of this filter are : ( a ) it evens out any pixel with abnormal intensity with

respect to its neighborhood, which is often the sign of noise, and ( b ) the details

of the image are well preserved. A mask of 7 × 7 was used in filtering the Rayleigh

scattering images.
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4.4.2.6 Histogram equalization

In the Rayleigh scattering images ( pure helium injection into the main air stream )

the pure helium signal and the background signal were of comparable magnitude, and

it was difficult to distinguish the helium signal above the background noise level. A

technique that optimizes the image contrast was used. It is known as histogram

equalization. In the Rayleigh scattering images, most pixels reside in a few small in-

tensity subranges near zero ( black ) level. By spreading the distribution so that each

range of pixel values contained an approximately equal number of members, the in-

formation content of the display was maximized. This technique results in a contrast

enhancement that allowed the helium signal to appear clearly in these images.

4.4.3 Image Analysis

Since M1 the images were acquired under identical flow conditions, the changes

observed in the images were due to the different nozzle inserts and the interaction

between the main flow and the injectant carrying ethanol droplets. By analyzing

the intensity contours, quantitative information about mixing and jet penetration

was obtained. In addition, analysis of the instantaneous images provided information

about the structural behavior of the jet/mainstream interface region and qualitative

characteristics of the mixing. Quantitative information, like geometric properties

of objects in an image, was obtained by image analysis, consisting of three main

phases : image segmentation, object recognition, and quantitative analysis. Images

consisted of shades of grey, but extraction of geometric properties from a grey scale

was difficult. Therefore the grey-shades images were transformed, through image

segmentation techniques, into a binary format, specifically into foreground and back-

ground. After the binary images had been produced, object recognition techniques
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were employed to locate and distinguish a particular object ( the foreground ) from

the background or other objects. Once an object had been identified, several ge-

ometric properties could be computed. The image analysis was performed on the

composite images. In the following sub-sections the compositing technique, as well

as the image analysis schemes are described. The image processing procedures were

implemented by Leonard 110 in a program named BlobTool, within the KBVisua1109

software package.

4.4.3.1 Compositing

A variety of structures were observed over the ensemble of images acquired in

each case. Because it is possible to support almost any hypothesis concerning the

mixing process by preferentially considering only those images displaying the desired

features, a more objective criterion for the analysis of predominant structure size

and orientation is necessary. For this reason composite images were analyzed rather

than instantaneous ones. Compositing images is a technique that is often used with

CCD's [ Bui190, pp.283-287 ]. Instead of taking a long exposure image, shorter

exposure images are taken, and then summed to reach the equivalent long exposure

image. Short exposure images have the potential for imaging the turbulence, while

long exposure images average in time and smooth out the turbulent structures, thus

loosing temporal changes. The addition creates a composite image made-up of a

number of different images. The composite is therefore an average image with less

noise than any individual image. The images are first stacked and centered with

respect to each other so that they are exactly superimposed. The resulting composite

image shows a decrease in noise because the noise is uncorrelated from one image to

another. Since noise is a random fluctuation of the signal around an average value,
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its effect on the image is reduced as the number of images in the composite increases.

On the other hand, the useful ( repetitive ) signals add up. Here, ten images were

composited resulting in an increase in the signal-to-noise ratio by a factor of v/_

with respect to a unique image. The long exposure image is not equivalent to the

composite image. For example, suppose that a given flow structure produces a signal

just slightly less than the quantification unit, in integration time t**p. This flow

structure is undetectable. However, by exposing ten times as long ( exposure time

= 10 × t**v ), it comes out clearly. Compositing ten images with exposure time

t**v gives a composite image in which the flow structure does not appear because

it does not appear in the images taken individually. In practice, the fluctuating

character of the noise and some statistical principles interact so that the flow structure

will be slightly discernible after compositing [ Bui190, pp.283-287 ], but in no way

comparable with the result of one 10ng exposure. In the present study the flow

structures in the seeded images have high intensity levels and are very turbulent.

Therefore, the compositing method was chosen to process them so that on one hand

the turbulent structures could be observed, and on the other hand the average image

was also obtained. For unseeded helium flow, a long ( ten seconds ) exposure time

was also employed because the signal from these images was very faint. The image

thus acquired can be considered an average of sixty instantaneous images.

4.4.3.2 Image segmentation

The purpose of image segmentation is to divide the image into meaningful regions

to allow extraction of quantitative information from the image. As pointed-out by

Leonard 110, the most commonly used point-dependent approach for image segmen-

tation is thresholding. Five different thresholding methods are implemented in the
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1. User defined threshold. The user can choose any arbitrary threshold value based

on a subjective evaluation of the image. If the threshold is too high, information

is lost, if it is too low, an increase in background clutter is observed.

2. Otsu's method.

3. Moment preserving method.

4. Entropy analysis method.

5. Minimum error method.

i

Methods 2 - 5 are "al tomatic" methods in the sense that the threshold value is not

defined by the user but is calculated by the algorithm itself. A discussion and a

comparison of these threshold methods is provided by Leonard 110. The "automatic"

thresholding methods were the first to be employed. They thresholded the images at

different threshold values. Since the purpose of this study was to compare the images

to each other, a constant threshold value was desired. Before thresholding, the images

were scaled to eight bits representation, i.e. from zero (black) to 255 (white). On

this scale, a threshold value of 55 was selected after other values were considered. It

was found that the automatic methods ( Otsu's and moment preserving, but not the

entropy method ) usually calculated the threshold value between 50 and 60 most of the

times. The entropy method gave values higher than 100 most of the times. It was also

found that threshold values between 30 and 80 do not drastically change the object

properties calculated after the thresholding. Threshold values lower than 10 resulted

in a quasi-circular object with very little details on the perimeter. Threshold values

greater than 100 resulted in a shape loss -- the thresholded image was composed of
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separated blobs instead of one contiguous blob. For intermediate values 10 - 30 and

80 - 100, drastic changes in the geometric quantities were observed. Therefore an

average value of 55 was selected.

iili!/

•:ili

4.4.3.3 Object recognition

After the image was thresholded, ( labeling the background of the image zero and

the foreground one ), the image recognition process was applied. This means that an

algorithm to detect objects in an image was run. There are several algorithms that

can perform this task,one of them, namely LAF ( Line Adjacency Fill ) algorithm

was implemented in the BlobTool program 110.

4.4.3.4 Quantitative analysis

After the object has been detected in the image, several geometric properties

can be computed. The area of an object is calculated by counting all the pixels

that belong to the object. Similarly, the perimeter is computed through counting the

"perimeter" pixels -- object pixels adjacent to background pixels. After the area and

the perimeter of an object are determined the roundness or the compactness can be

computed as

(perimeter) 2

4_r(area) (4.6)

For reference, the circle has a compactness of one.

Many geometric properties can be determined from the moments of an objects.

In shape analysis, moments assist in defining the direction and orientation, center of

area, and eccentricity of an object, and its displacement within the image. The area

center _ position is the sum of all the coordinates in the object divided by the total
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area of the object. The center's ff position is similarly-defined.

m--
1 /I,t - 1 N-1

×m (4.7)
area m=O ,_=o

12--
1 M-1 N-1

area _ _ I(m,n) × n (4.8)
rn=O n=O

where I(m,n) is zero, if background and one, if an object. The moments of an object

may be affected by shift or change in scale of the image, therefore, moments are made

shift invariant by defining the ij th moment, Mij, as

M-1N-1

M,j = _ y_ (m - _)'(n - _)Je(m,n)
rrt=O rt----O

(4.9)

where i,j=0,1,2. The orientation,/9, of an object is the angle associated with the axis

of least moment of inertia and is given by

1 1 2/1411
0 = -_tan- (M_o --Mo2] (4.10)

where Mll is the xy moment about the center, m, n, Mo2 is the second moment

about the horizontal line through the center and M20 is the second moment about

the vertical line through the center of the object. The eccentricity of an object is

given by

(M2o - Mo2) 2 "31-4Mll

area (4.11)

For each perimeter pixel, its distance to the center of the area was calculated, and

the maximum and the minimum distances were determined, their ratio being an

additional eccentricity criterion for the object.
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4.5 Analysis of Experimental and

Computational Data

This section describes the methods used to analyze the injector's performance

subject to various nozzle inserts. Three areas were addressed : mixing performance,

loss analysis, and jet penetration. These performance parameters were interpreted

in terms of scales much greater than those on which molecular mixing took place.

Furthermore, only the mean flow field was considered, and the temporal aspects were

addressed based on their manifestation in the mean. These goals result from the

limited scope of the study as discussed in Sec. 1.3.

4.5.1 Mixedness Measure

An understanding of the effectiveness of an injection scheme requires detailed

knowledge of the level to which the injectant is mixed with the surrounding air as a

function of distance downstream from the plane of injection.

4.5.1.1 Mixedness measure from experiments

To quantify mixing, measurement of species concentration is the most direct

method. Since this measurement was not performed in this study, mixing will be

inferred from other quantities obtained from the visualization tests. Mixing is a two-

step process. The first step, stretching, is a necessary precursor to the second step,

diffusion, because it is through gradient intensification that diffusive effects become

important. This suggests that an appropiately defined stretching parameter can be

used to characterize mixing. In this study two geometric properties were used to

characterize the mixing : the area and the perimeter of the thresholded images.
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An additional factor, the compactness [= (perimeter-) 2 / (4 7r area ) ] was used to

characterize the effectiveness of the various nozzle inserts. Higher compactness values

mean longer and more convoluted interfaces that facilitate the molecular-scale mixing

through diffusion.

4.5.1.2 Mixedness measure from numerical computations

The numerical results allow determination of the fraction of the total injectant

mass flux which was present in various concentrations at each axial station : Y/,_j

vs. _. This measure will be displayed on contour plots to provide qualitative and

quantitative means for comparison with the experiments. A bulk measure of the

extent to which the injectant has mixed with the mainstream is the decay of the

maximum injectant mass fraction downstream of the injection plane : Y/nj,m_ VS. _.

4.5.2 Loss Analysis

Any mixing augmentation scheme will increase the irreversible losses, decrease the

axial momentum and eventually decrease the engine thrust so that it is important to

grade the various injectors on a loss basis. The losses associated with mixing augmen-

tation schemes can be classified into three categories : thermodynamic losses directly

associated with mixing, losses which are associated with phenomena that enhance the

mixing, and losses associated with phenomena that do not enhance mixing. The loss

directly associated with mixing is measured by the entropy rise due to pure diffusion

of dissimilar molecular species. This entropy rise cannot be avoided, and since it

results directly from mixing, it is acceptable. The losses which are associated with

phenomena that enhance mixing are acceptable as well if they are efficacious. These

losses originate from the fuel preconditioning inside the nozzle inserts, and from the
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flow losses incured by the swept-ramp. Flow losses for-a ramp configuration include

shock, friction and pressure drag on the face of the ramp, vorticity generation, base

pressure drag, and flow recirculation 26. The shock causes the pressure rise which is

fundamental in generating the vortical roll-up off the ramp. Its strength determines

the pressure rise, the vorticity field strength, and vorticity generation losses. All the

other ramp losses are undesirable. The flow losses incurred by placing a ramp in a

supersonic airstream must not negate the benefit which is obtained by the mixing en-

hancement. The losses that do not enhance mixing are related to shocks generated by

the combustor walls ( here by the duct walls ), wall friction, shock wave - boundary

layer interaction, and shock-shock interactions. An efficient injection scheme would

limit all these losses, especially those that are caused directly by the existence of the

scheme. However, due to the non-linear, coupled nature of this flow field, separate

losses are difficult to distinguish.

In this study the entropy was calculated based on the numerical simulation data

according to the following equation

Ys T _ dT p _-_nilnXi (4.12)
S = _ ni p,i -_ R,, In -- + si,r_f - R_,

i=1 el Pref i=1

where subscript "ref" stands for a reference thermodynamic state. Dividing by Ru

and by the total number of moles in the system, the following equation was obtained

_=l _ /_ T
NsIn _ 3- - __X_lnXi (4.13)

Pr e f i=1

The second summation on the RHS of the last equation represents the entropy gen-

•, _:i_ •
erated by the diffusive mixing. Since the mole fractions X_ are always less than one,

this term will always be positive. The magnitude of this term depends only on the

mole numbers and is independent of the kind of the gases involved in the process.

The increase in entropy occurs because the individual gases occupy a larger volume
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4.5.3 Jet Penetration

Strong penetration of the fuel jet into the main airstream is required to reduce

the adverse heating effects at the combustor wall. The lift-off height of the jet as

a function of downstrem distance was obtained from calculating the centroid of the

thresholded images as described in Sec. 4.4.3.4. This measure characterizes the bulk

behavior of the injectant. This lift-off height was also calculated from the numerical

results by calculating the height ( _ ) of the injectant ( air or helium ) mass flux

center, calculated as :

Nv N_E =I
zi = N, (4.14)

Ek=l rhinj (j, k)Ej=I Nz

where: rhi,.i(j,k) = Ca(j,k)Yi,_j(j,k), and N u and Nz are the number of grid points

in y-direction and in z-direction respectively.



Chapter 5

RESULTS AND DISCUSSION

This chapter contains a detailed presentation of the data obtained both experi-

mentally and computationally. The discussion provides a complete description of the

flow field and injector performance characteristics.

5.1 Flow Field Survey Results

The experimental flow field survey results are displayed in detail in Figs. 5.1

through 5.10. These figures show the data obtained from the flow survey rake. The

iterative procedure discussed in Sec. 4.2 was used to reduce the raw data to variables

such as Mach number, static pressure, and static temperature. The results of this

reduction procedure are presented for each tested case in the above mentioned figures.

The errors associated both with the measurements and the data reduction techniques

allow little confidence locally in these solutions. There are some areas where the flow

angularity have produced erroneous local values. It should be stressed that the data

were averaged in time and the unsteady component of the flow field was not resolved.

First, the main flow only ( jet off ) was surveyed and then the jet was turned on and

the combined flows were surveyed.

108
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5.1.1 Main Flow- Jet Off
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The flow field survey data of the main flow only ( jet off ) is presented in

Fig. 5.1,a-d. For 5 = 0.75, Fig. 5.1a, a subsonic region was observed in the base

region of the ramp. High static temperatures and low static pressures were measured

in this region. Two vortex cores were observed, having low Mach numbers, low total

pressure, and high static temperature. On the side walls of the duct were two vortices

generated by., the side ramps. These two vortices were higher then the vortices gen-

erated by the middle ramp. For 5 > 3.9 this subsonic region did not exist anymore.

For _ = 3.9 the Mach number, total pressure, and temperature contours displayed a

"mushroom" like form. This form disappeared downstream of this cross-section, the

ramp's wake becoming quasi-axisymmetric. High Mach numbers and total pressure

were observed between the ramps, indicating very low losses for the flow between the

ramps. For _ = 0.75 and _ = 3.9 most of the flow field had a Ptotat/Pr,_,_,,m of 0.9 or

higher. The lower total pressure was confined within the ramp's wake. For _ = 10,

most of the flow field had Ptot,,dPp_n,,,_ of 0.8 or less, indicating that there were losses

in the flow.

5.1.2 Main Flow and Injection

The survey data of this flow field is presented in Figs. 5.2 to 5.10. For _ = 0.75

the subsonic region downstream from the ramp's base still existed, however it was

broken by the injectant into two subregions -- above the injection port and below

the injection port. The side vortices observed in the previous case were not affected

by the injection. The fuel plenum chamber pressure was about 0.6 of the main flow

plenum pressure ( see Table 2.1 ), therefore the isobar Ptot_t/Ppt_n_,m = 0.6 and less

can be considered as contouring the jet.
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The flow field of the circular nozzle insert _ the baseline case, is shown in Fig. 5.2.

The global behavior was very similar to the previous case with the jet off. In the

present case there was a greater loss in the total pressure at _ = 0.75. Further

downstream, the results show that the jet had very little influence on the main flow.

The flow field of the nozzle with three steps is displayed in Fig. 5.3. The flow field is

similar to the baseline case. The flow field of the nozzle insert with vortex generators

was surveyed with the tabs in "X" orientation as well as in cross orientation. The

"X" case is shown in Fig. 5.4 and the cross case is shown in Fig. 5.5. The flow in both

cases was very similar and only very minor differences could be observed within the

experimental resolution. Figs. 5.6 and 5.7 display the flow field of the tapered-slot

nozzle with the slot in horizontal position and in the vertical position, respectively.

The tapered-slot nozzle displays the most noticeable changes when the throat slot

was rotated from the horizontal to the vertical : Figs. 5.6b vs. 5.7b, 5.6c vs. 5.7c,

and 5.6d vs. 5.7d. The jet from the nozzle with the horizontal throat slot spread

more vertically, and the jet from the vertical throat slot spread more laterally staying

lower than the former. The elliptical nozzle insert flow field is shown in Figs. 5.8

and 5.9 for the horizontal major axis and vertical major axis, respectively. Within

the experimental resolution only minor differences could be observed. Both cases are

very similar to the circular nozzle case. The trapezoidal nozzle flow field is shown in

Fig. 5.10. The flow for _ > 3.9 is very similar to the baseline case.

In conclusion, all the nozzle inserts display similar behavior, except the tapered-

slot insert with the vertical slot which spread more sidewise than the others. The

main flow was very dominant -- switching the jet on showed very little difference at

= 7 and Y = 10 in comparison with the jet off case.
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5.2 Flow Field Visualization Results

The Mie-scattering planar imaging technique produced two-dimensional images

containing intensity information that characterizes the visualized flowfield. Length

scales in centimeters were drawn on each image. Also, the ramp and the injector

insert were displayed in the background to facilitate the understanding of the images.

For the side views, the flow was from left to right, and the length scales shown were

measured from the bottom wall and from the injector exit. For the transverse views,

the flow was towards the observer, and the length scales were measured from the

bottom wall and from the centerlinel

Since all the images were acquired under the same flow conditions, the changes

observed were caused by the different nozzle inserts and the interaction between the

main flow and the injectant that carried the ethanol droplets. By analyzing the

intensity contours, quantitative information about mixing and jet penetration was

obtained. In addition, analysis of the instantaneous images provided information

about the structural behavior of the jet/mainstream interface region and qualitative

characteristics of the mixing.

5.2.1 Jet Flow - Main Flow Off

The jet flow field only ( main flow off ) is shown in Figs. 5.11 through 5.14.

Fig. 5.11 displays instantaneous images of transverse views of ethanol-seeded air jets

at y = 0.75 for the nine configurations tested. Each nozzle insert produced a jet

with a unique shape. The circular nozzle and the nozzle with three steps created

a circular cross-section jet. The trapezoidal insert created a trapezoidal jet. The

jet from the nozzle with the vortex generators was deformed by the tabs, each tab
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creating a small indent in the jet cross-section. For the tapered-slot nozzle the jet

spread more to the minor axis of the slot. For the horizontal slot position the jet

spread vertically, touching the bottom wall very close to the injector exit ( 5 = 0.75 )

an undesired behavior from the heat transfer point of view. ,The jet from the

vertical slot injector spread laterally. The elliptical nozzle produced a jet with an

elliptical cross-section. The same cross-section shape was observed when helium was

injected instead of ethanol-seeded air ( Fig. 5.12 ). Fig. 5.13 displays instantaneous

images of transverse views of ethanol-seeded air at _- - 3.9. The jets still display

the characteristic cross-section shape as in the previous cross-section, but the areas

increased due to entrainment, and jets have lifted relative to the nozzle exit plane.

Fig. 5.14 shows side view images of ethanol-seeded air jets. Both large-scale and

small-scale structures are visible in all the images.

5.2.2 Main Flow and Injection

The combined flow field -- main flow and injection -- is presented by instanta-

neous side and transverse views, and by composite views.
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5.2.2.1 Side views

Select instanteneous side view images of the ethanol-seeded air along the cen-

terline plane of all the injectors are presented in Fig. 5.15. Large scale structures

are visible in all theimages. Smaller scale structures are also visible and appear to

dominate the interfacial regions. An interesting feature is the black hole in the left

side of the images, where the jet is very close to the injector's exit. The signal was

lost because the re-evaporation of the ethanol downstream the Mach disk of the bar-

rel shock, caused by the sudden compression (an increase in both temperature and
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static pressure). Fig. 5.16 presents instantaneous images of ethanol-seeded helium

jets. Both large and small scale structures were observed in this case too. The black

hole caused by the re-evaporation of the ethanol is not seen in this case because the

jet is almost pressure-matched to the surrounding pressure, and therefore the shock

compression does not cause ethanol vaporization. Side views of instantaneous images

of Rayleigh scattering ( helium injection ) are shown in Fig. 5.17. The images display

the same global features as the ethanol-seeded images. Also, an oblique shock can be

observed in these images. This oblique shock turns the flow that passed the expan-

sion fan which emanates from the ramp base corner, in a direction which is nearly

parallel to the jet. The small-scale structures are not visible in this case because

the images were smoothed by a median filter to improve the quality of the images

( see Sec. 4.4.2.5 ). Also the contrast of these images was enhanced by applying the

technique described in Sec. 4.4.2.6.

5.2.2.2 Instantaneous tr.ansverse views

Instantaneous cross-section images of ethanol-seeded air jets of all the nozzle

inserts are shown in Figs. 5.18 to 5.26. In Fig. 5.18 the injector nozzle geometry

influence is immediately apparent. The jets shapes are similar to the previous case

with the main flow off. However, in the present case the cross-section shows a torus

shape caused by the re-evaporation of the ethanol, because of the barrel shock com-

pression. This phenomenon is also observed in the side view images, as discussed

above in Sec. 5.2.2.1.

In Fig. 5.19, the downstream distance is _ = 3.9, and all the images show the

jets forming a "horseshoe" shape caused by the two streamwise vortices generated

by the ramp, that lift and almost split the jet in two "blobs". Downstream, _ = 7
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and _- = 10, ( Figs. 5.20 and 5.21 ), the jet flow becomes almost independent of

the injection geometry and displays a quasi-axisymmetric pattern. Both large-scale

and small-scale structures are visible in all these images. Figs. 5.22 through 5.25

present ethanol-seeded helium jets. These images display the same flow features as

the ethanol-seeded air jets. As already mentioned, the helium jets are almost pressure-

matched to the surrounding, therefore the ethanol does not re-evaporate at _ = 0.75,

and the images display a solid cross-section. Fig. 5.26 shows helium injection into

the main air stream ( Rayleigh scattering ). In spite of the poor quality the same

behavior as in the case of Mie scattering could be observed.

5.2.2.3 Composite transverse views

Ten images were composited resulting in an average image with less noise than

any individual image ( see Sec. 4.4.3.1 ). The composite image was thresholded,

thus dividing it into two distinct regions : the background and the foreground which

was the ethanol seeded region. After the image was thresholded, several geometric

properties could be computed that provided quantitative information about mixing.

In this study, two geometric properties were used to characterize mixing : the area and

the perimeter of the thresholded images. An additional factor, named compactness

[ = (perimeter) 2 / (4 7r area ) ] was used to characterize the effectiveness of the

various nozzle inserts. Higher compactness values mean longer and more convoluted

interfaces that facilitate the molecular-scale mixing through diffusion. The z-centroid

of the thresholded image was also calculated, providing a means of characterizing the

jet penetration.

Figs. 5.27 to 5.30 show composite images of ethanol-seeded air jets. Figs. 5.31

to 5.34 show composite images of ethanol-seeded helium jets. The contour represent-
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ing the threshold value is also plotted on the images. - The normalized cross-section

area of the jets is displayed in Fig. 5.35a. The area increases monotonically down-

stream, up to _- = 7. Beyond this point the area remains constant for all the inserts

with the exception of the tapered-slot nozzle with vertical slot, that continues to grow.

The normalized perimeter shown in Fig. 5.35b, increases at a higher rate for g < 3.9

than for _ _> 3.9. Because the perimeter increases while the area remains constant

for the last two planes, it may be concluded that the interface is more convoluted

in the last plane than in the plane upstream. This can be seen also in Fig. 5.35c,

where the compactness factor displays an increase from g = 7 to g = 10, indicating

an increase in mixing. The compactness factor increases rapidly for g < 3.9 due to

rapid stretching of the jet by the vorticity in the region close to the ramp. This

stretching increases the perimeter length, while the area which is proportional to the

mass entrainment, grows slowly, thus obtaining a very high compactness factor. For

> 3.9, the area starts growing fast and the interface growth slows-down, causing

a decrease in the compactness factor. The z-centroid, displayed in Fig. 5.35d, shows

a monotonic increase with the downstream distance at an angle of about 5°. The

tapered-slot nozzle with the vertical slot has a lower penetration because it spreads

more sidewise than vertically, thus having a lower center of area. Because the tapered-

slot nozzle with vertical slot throat spreads more sidewise than the other inserts, the

field of view for cross-sections _ = 7 and _ = 10 ( Fig. 5.29h, and Fig. 5.30h ) is

smaller than the extent of this jet, introducing errors in the calculation of the area,

perimeter, and compactness factor. The calculated area and perimeter length for this

nozzle are smaller than the actual values.
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5.3 Numerical Simulation Results

The numerical simulation results are displayed in Figs. 5.36 through 5.56. The

: !i:! ?

• i ii__

data were time-averaged and the unsteady component of the flow field was not re-

solved. First, the main flow only ( jet off ) is displayed and then the combined flows,

jet and main flow are displayed. Two kinds of "fuel" were simulated : air, and he-

lium. This allowed observation of the jet/main-flow interaction and the influence of

the "fuel" on the flow. For comparison purposes the numerical data have been plotted

in the same form and in the same transverse planes as the experimental data plots.

5.3.1 Main Flow- Jet Off

i_ii!!iii!_

The main flow field data ( jet off ) are presented in Figs. 5.36 through 5.42.

Fig. 5.36,a-g shows calculated contours of flow variables, as well as velocity vectors,

in the symmetry plane of the duct. The oblique shock wave formed by the ramp

compression corner hits the upper wall and is reflected, hitting the ramp about 8 mm

before the base. No additional oblique shock reflection is possible, thus obtaining a

Mach reflection. Shortly after that, the flow encounters an expansion fan which turns

the flow from the top wall of the ramp towards the base, accelerating the flow and

decreasing the static pressure. Downstream from the base of the ramp, a subsonic

recirculation region exists, having low static pressure and density, and high static

temperature. This subsonic region has the form of a "bubble". Between this subsonic

region and the expansion fan which emanates from the ramp corner, there is a curved

shock wave which actually decelerates the flow to subsonic speeds and encapsulates

the subsonic bubble. Further downstream, the expansion fan reflects from the upper

wall of the duct and interacts with the curved shock which encloses the recirculation
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bubble. This interaction, and further downstream interactions, are smeared out by

viscous effects, and become difficult to identify. Fig. 5.37 displays contours at _ = 0

( ramp base ). The ramp is drawn on these plots for orientation purposes. High

pressure exists above the top wall of the ramp and low pressure between the ramps

causing the flow to turn around the corners of the ramp, generating strong vorticity.

Axial vorticity contours ( normalized by the freestream velocity and the height of the

ramp ) are displayed, showing that strong vorticity is present in the flow and that

it is concentrated in two counter-rotating vortices emanating from the corners of the

ramp. The vortices cores have low Mach number, low static and total pressures and

density, and high static temperature. Figs. 5.38 to 5.41 show the calculated contours

for 5 = 0.75, 3.9, 7, and 10. Fig. 5.42 shows a closeup of the velocity vectors and a

Mach=l contour near the ramp base. The ramp wake extends down to 5 _ 4 and a

"tongue" of subsonic flow emanates from the ramp corner and penetrates the flow as

far as _ ,._ 2.5 ( h=0.639"_ 1.6 cm ).

5.3.2 Main Flow and Injection

The results of the combined flow with the circular nozzle are presented in Figs. 5.43

through 5.49 for air injection, and in Figs. 5.50 through 5.56 for helium injection. In

these figures, the mass fraction of the "fuel" is also displayed, showing the jet spread-

ing and penetration. No major differences were observed between the case of air

injection and the case of helium injection, even though the velocity of the jet changed

from 449 m/s ( air ) to 1213 m/s ( helium ). Both are very similar to each other

and to the case with the jet off, showing that the main flow was very dominant, and

the jet had very little influence. The velocity vectors plots indicate that the induced

velocity entrains freestream fluid into the center of the injectant plume, creating the
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"mushroom" shape which is observed in all other contours. Figs. 5.49 and 5.56 show

a closeup of the velocity vectors and the Mach=l contour near the ramp base. The

ramp wake extends down to Y _ 4 and a "tongue" of subsonic flow emanates from

the ramp corner and penetrates the flow down to y _ 2.5, the jet discharging inside

this subsonic region.

5.4 Discussion

The discussion is intended to provide a complete description of the characteristics

of the flow field and injector performance. The interpretations are based largely upon

the form of the flow field represented in the experiments and computations, where

phenomena were not completely resolved either temporally or spatially. The spatial

resolution provided by the computational grid ( 4623 points ) was considerably better

than that of the experiments ( 168 points ). A utility of the numerical simulation is

that it allows presentation of "fuel" mass fraction and of derived quantities such as

vorticity which could not be obtained experimentally.

5.4.1 Comparison Between Experimental and Numerical Data

The comparison between the experimental and the numerical data is affected by

the inherent difficulties in reducing the experimentally obtained rake data to base

flow variables. Another source of error in the experimental data is the location of the

probes ( see Sec. 2.4.2 ). This problem introduces errors in the location of the flow

features. Also, due to the experimental grid resolution, which is significantly lower

than that of the numerical grid, the experimental flow field gradients will appear

broader than the gradients in the numerical simulations. Similarly, the sources of



119

error in the numerical solutions, in order of importance, are the turbulence model,

grid resolution, the omission of the boundary layer on the side wall, and the fidelity of

the modeled ramp base and circular geometry at the exit of the jet. The comparison

between the experimental and the numerical data is based upon the form of the flow

field ( pressure, temperature and Mach number contours ). This comparison shows a

very good agreement at _- = 0.75, 3.9, and 7. For _ = 10 the numerical contours are

located at higher z-coordinates than the experimental contours. Pigs. 5.57a and 5.57b

present the static pressure, measured and calculated, along the centerline plane of the

top and bottom walls of the duct. The comparison shows good agreement regarding

the position of the prominent flow features, i.e., expansion fan and shocks. The

calculated wall pressure is in general higher than the measured pressure.

The effect of the jet stretching by the vortical flow field is shown in Fig. 5.58 which

displays the computed location of the injectant's maximum mass fraction Yi,_j,m,,.

Fig. 5.58a shows the normal distance _, and Fig. 5.58b shows the spanwise distance

_-. Both the air and the helium jets display identical behavior. The Yinj,m,x is located

on the centerline down to _ _ 1.5, and then it moves sidewise to a maximum distance

of 9- _ 0.6 due to stretching by the strong vortical field. The jet does not interact

with the vortical flow until z m 1.5 because it is enclosed in the subsonic "bubble" of

the ramp wake. This also is corroborated by the visualization results -- at z = 0.75

the jets' cross-section mantains the shape and the size of the jet's exit cross-section,

meaning that the jets do not interact significantly with the vortical flow field. At

_ 3 the subsonic "tongue" ( see Figs. 5.49 and 5.56 ) disappears and the Yinj,,_,x

reaches the maximum spanwise distance. The same behavior was observed in the

visualization images. At z = 3.9 the images show a "horseshoe" shape with the

maximum intensity ( ethanol content ) found off centerline ( see Figs. 5.19 and 5.23 ).
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The effect of the vortical flow was also inferred from the compactness factor displayed

in Fig. 5.35c. The compactness factor increases very rapidly for z < 3.9 due to rapid

stretching of the jet fluid by the applied vorticity field in the region close to the

ramp, where the bulk stirring takes place. Downstream, from 5 = 7 to _ = 10, the

compactness factor increases at a slower rate indicating a slower rate of mixing. The

compactness factor behavior is in agreement with the behavior of the maximum mass

fraction, Y_nj,m_, as displayed in Fig. 5.58b. This behavior is consistent with the

above description of the flow field.

Two more quantities are used to characterize the extent to which mixing has oc-

cured : the magnitude of the vorticity vector and the helicity. An integral measure of

vorticity production within the flow is presented in Fig. 5.59a. The vorticity produc-

tion is caused mainly by fluid migration from the high pressure region on the upper

surface of the ramp to the low pressure region in the trough between the ramps, and

is termed "ramp-generated vorticity". It increases gradually from the beginning of

the ramp and reaches a maximum at _ _ 3, where it begins to decay at a very slow

rate. The helicity density is defined as the scalar product of the velocity vector and

the vorticity vector :

g=u._ (5.1)

The helicity density was mass-averaged across each i=constant plane, and is presented

in Fig. 5.59b. High values of helicity density reflect high values of speed and vorticity

when the relative angle between them is small. The sign of the helicity density is

determined by the sign of the cosine of the angle between the velocity and vorticity

vectors. Therefore, the sign of the helicity density indicates the direction of swirl of

the vortex relative to the velocity vector. Since in the present case the helicity density

was mass-averaged across the transverse planes, the result is indicative of vorticity
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transport by convection in the flow field. Fig.. 5.59b shows that significant changes

in the calculated helicity take place between the ramp base, z = 0 and _ _ 3. This

change means that the major stirring (by the ramp vortices) occurs in this region,

which is consistent with the aforementioned flow-field description.

Fig. 5.60 displays a combination of experimental and numerical data to facilitate

the flow-field description. In the range of 0 < _ < 1.5 the jet does not interact with

the main flow - Yinj,ma_: is one and the cross-section shape of the jet is the same as

the cross-section of the nozzle. In the near-field mixing region, 1.5 < Z < 4, where

the main stirring takes place, the jet is stretched by the ramp-generated vortices, and

is distorted into a"horseshoe" shape. Fresh air from the main flow is injected into

the jet core, and the Yinj,maz decays rapidly. The region 4 < _ < 7 is a transition

region between the near-field and the far-field mixing. In this region the vortices

bring fuel from the upper part of the jet into the core, refilling the core with fuel.

The jet cross-section becomes quasi-circular. In the far-field mixing region, 7 < 5,

the Yinj,rnaz and the cross-section area of the jet level-off. The micro-mixing takes

place in this region.

In conclusion, good overall agreement between the experimental data and the cal-

culations was observed for this complex, highly three-dimensional flow field. Gaining

confidence in the numerical solutions, additional derived quantities were obtained

from the numerical simulations and were used to characterize this injection scheme.

5.4.2 Mixing

A measure of the mixing rate that has been used in previous investigations is the

downstream decay of the maximum injectant mass fraction 57. Fig. 5.61a shows the

calculated decay of the injectant maximum mass fraction. The decay of Ym_x is a
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sensitive indicator of the dominant mixing mec-hanism; Fig. 5.61a reveals that down

to 5 _ 1.5 for air and 5 _ 1 for helium, Yma_ is equal to one, showing that the jet does

not interact with the main flow in this region. Downstream of this region, the vortices

generated by the ramp drive freestream air into the jet. This is responsible for the

rapid initial drop in Y,_ax ( and for producing the "horseshoe" shape as seen in the

visualization results ). Mixing in this region of the flow field is strongly affected by

the coupling of the jet flow to the pair of ramp generated vortices. As the jet entrains

surrounding air and grows, the strength of the vortices decreases. As a result, the rate

of decay of the Ym_x decreases too, as seen in Fig. 5.61a. This happens at _ _ 5, which

corresponds to x/d _ 11. In this region, the rate of decay of Ym_, is governed by the

rate of small-scale mixing. Downstream from 5 ,,_ 7 ( x/d ,,_ 16 ), the decay of Ym_,

levels-off. The cross-section area of the jet also levels-off at the same cross-section as

Yma, ( See Fig. 5.60 ). In this region the flow field is insensitive to the initial injector

configuration, displaying a quasi-axisymmetric shape. This observation is consistent

with the experimental flow field description presented in the previous sections. The

decay of the maximum injectant mass fraction can also be presented on a log-log plot

to give a useful indication of the rate of injectant mixing downstream of the injector

exit plane. Previously, it has been found by Thomas et al. 57 that, far downstream of

the injector, the data generally falls along a straight line in such a plot. The decay

of the maximum injectant mass fraction can be written as :

r_ ¢x (5.2)

where n is the slope of the line fitted to the far-field mixing data. Taking the

logarithmic differential of Eq. (5.2) gives

dYm_

Ymaz

d(x/d)
rt

x/d
(5.3)
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The decay rate of Ymaz is dependent on both the local value of Ym_, and the location

downstream of the injector. The relative change of Ym_ is proportional to the relative

change in the normalized distance downstream of the injector. Thus, 1% change in

x/d location produces a n% change in Ym_x. A higher value of n indicates a faster

relative rate of injectant far-field mixing. Therefore, the value of n indicates the rate

of mixing. Fig. 5.61 shows a log-log plot of the calculated decay of the maximum mass

fraction of the injectant versus z/d. The slope of the calculated curves is very close to

-0.8, which is the rate obtained by Thomas et al. 57 for different injection schemes.

The helium jet displays a higher rate of decay of the maximum mass fraction than

the air jet. The mixing efficiency, defined in Sec. 1.2.6, is presented in Fig. 5.62. The

helium jet displays a greater efficiency than the air jet, a behavior which is consistent

with the higher rate of decay of the maximum mass-fraction. Actually, the plot

displays the effect of the molecular weight of the injectant -- the lighter "fuel" has

a higher mixing efficiency. The hydrogen, the actual fuel, will have a greater mixing

efficiency under the same flow conditions.

The effect of the injector geometry was indirectly inferred from the compactness

factor displayed in Fig. 5.35c. At Y = 10, the compactness ratio is fairly insensitive to

the injector geometry. Only the insert with the vortex generators in cross orientation

displays some advantage over other inserts.

It is of interest to cast the mixing performance in light of pertinent fuel/air mass

flux ratios for scramjet applications and to consider the freestream area required

relative to the area of the injector exit plane, if the fuel were to be homogeneously

mixed to a desired mass fraction for a given set of conditions. The equivalence ratio,

4, is expressed as

-'7"--

_Tt

_b= _,_ (5.4)
_'lZstoic
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where the subscript "stoic" refers to stoichiometric, and the injectant to freestream

-:- Pinj Uinj Ainj

m = p_oU_oAoo = -fiVA (5.5)

mass flux ratio, _, is given by

Using the ideal gas equation of state for both the injectant and the freestream, the

last equation can be expressed as

T (5.6)

Therefore, the area required to provide a desired equivalence ratio for a given set of

injectant and freestream conditions is

¢rhT
= p34_-----_ (5.7)

For the following typical scramjet operating conditions : ¢ = 1, _ = 0.03, Ad = 2/29,

= 1, _ = 1, and T = 1/6, this area ratio is : A = 0.07, which means that the

injectant must be homogeneously mixed into an area approximately 14 times larger

than the area of the injection exit plane.

5.4.3 Penetration

The jet penetration calculated from the visualization data is displayed in Fig. 5.63a.

This figure actually displays the z-coordinate of the center of the area that contains

ethanol droplets, originating from the injector, and characterizes the bulk behavior of

the injectant. The calculation of this quantity was described in Sec. 4.4.3.4. Fig. 5.63b

shows the z-coordinate of the maximum mass fraction of the injectant, and Fig. 5.63c

shows the z-coordinate of the injectant mass centroid, obtained from the numerical

simulations. The calculation of the last value was described in Sec. 4.5.3. The area-

centroid and the mass-centroid are not the same. While the penetration based on the
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mass center shows an average angle of 10 °, the penetration based on the area center

shows an average angle of only 5 ° , which means that within the cross-section area

occupied by the injectant, the injectant was not homogeneously dispersed. There

exist regions that are fuel rich and others fuel lean. The fuel rich regions were lo-

cated around a line which maintained the initial injection angle, a behavior that also

can be seen in the figures which display the calculated mass fraction contours of the

injectant. These contours show a "kidney" shape, especially for _ = 7 and _ = 10,

with the high mass fraction located in the upper part of the "kidney".

5.4.4 Losses

The losses incurred by the fluid as a result of interaction with the ramp and the

jet are an important measure of the injector performance. Rise in the total mass-

averaged entropy of the fluid through the computational domain is shown in Fig. 5.64.

The entropy was calculated according to the procedure described in Sec. 4.5.2. The

entropy increases monotonically for all the cases investigated, i.e., jet-off, air injection,

and helium injection. For the helium injection the entropy due to mixing is also dis-

played. The entropy rise prior to the injection plane is caused by the ramp-generated

shock system and subsequent non-isentropic flow in the boundary layer. Subtracting

the entropy at _ = 0 from the entropy rise between _ = 0 and _ = 10 gives the

entropy change caused by irreversibilities downstream from the injection plane. The

entropy due to mixing is about 1/3 of the total entropy change downstream of the

injection plane. The helium shows higher entropy levels than the air downstream

of the injection plane, implying more mixing. This is consistent with the previous

findings of higher mixing rate and mixing efficiency.

Another calculation of losses was made based on the rake data. Fig. 5.65a shows
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the average total pressure measured in the probe experiment, and Fig. 5.65b shows the

increase of entropy calculated from the total pressure. All the injector inserts display

a similar behavior and have virtually the same total pressure loss ( and entropy

increase ), therefore, the average total pressure was fairly insensitive to the injector

geometry. As can be inferred from the curve representing the jet off case, most of

the total pressure losses are caused by the ramp. The normalized entropy calculated

from the experimental data has a similar level to the entropy calculated from the

computational data ( Fig. 5.64 ).

/i
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Fig. 5.1 Experimental contours, main flow only, no injection
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Fig. 5.1 (contd.) Experimental contours, main flow only, no injection
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Fig. 5.2 Experimental contours, circular nozzle insert



130

Ptotal / Pplenum

z/h z/h

o,O,
.... , .............. 1 0.4

-2 -1 0 1 2

y/h

Mach number
z/h ........................... 7 1.9

5 1.7

4 1.6

3 1.5

2 1.4

-2 - 1 0 1 2 1 1.3

y/h

C. Cross - section at x / d = 16.,

Pstatic / Pplenum

.......................... 7 0.17

_ _4_ I 6 0.16

5 0.15

4 0.14

3 0.13

2 0.12
' ' t .... J ........ i .... t • '

-2 -1 0 1 2 1 0.11

y/h

Tstatic / Tplenum
8 0.72

z/h ........................... 7 0.7
2 _ -1 . -

5 0.66

1 4 0.64
3 0.62

0 ............ 2 0.6
-2 -1 0 1 2 1 0.58

y/h

x/h=7.

Ptotal / Pplenum

z/h
, , , , , , , , i .... J .... i .... i , ,

2 1 ,-----2---.__.-_ ,_, ,--------_. ---------

-2 -1 0 1 2

y/h

• z/h

I 5 0.9 2

4 0.8

3 0.7 1
2 0.6

• 1 0.5 0

z/h

2

1

0

Mach number

-2 -1 0 1 2

y/h

7 1.9

6 1.8

5 1.7

4 1.6

3 1.5

2 1.4

1 1.3

Pstatic / Pplenum

, , , I , , , , I , i i , I .... i .... I , , .

' ' ' L .... i .... i .... i .... i , • •

-2 -1 0 1 2

y/h

Tstatic // Tplenum

z/h ...........................

0 ,,_ ........................
-2 -1 0 1 2

y/h

d. Cross-section at x/d=23., x/h=lO.

5 0.2

4 0.18

3 0.16

2 0.14

1 0.12

9 0.75

8 0.72

7 0.7

6 0.68

5 0.66

4 0.64

3 0.62

2 0.6

1 0.58

Fig. 5.2 (contd.) Experimental contours, circular nozzle insert
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Fig. 5.3 Experimental contours, nozzle with three steps
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Fig. 5.3 (contd.) Experimental contours, nozzle with three steps
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Fig. 5.4 Experimental contours, nozzle with vortex generators, "X"
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Fig. 5.4 ( contd. ) Experimental contours, nozzle with vortex generators, "X"
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Fig. 5.5 Experimental contours, nozzle witi_ vortex generators, "+"
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Fig. 5.5 (contd.) Experimental contours, nozzle with vortex generators, "+"
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Fig. 5.6 Experimental contours, tapered-slot nozzle, horizontal slot
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Fig. 5.6 (contd.) Experimental contours, tapered-slot nozzle, horizontal slot
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Fig. 5.8 Experimental contours, elliptical nozzle, horizontal major axis
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Fig. 5.8 (contd.) Experimental contours, elliptical nozzle, horizontal major axis
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Fig. 5.9 Experimental contours, elliptical nozzle, vertical major axis
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Fig. 5.9 (contd.) Experimental contours, elliptical nozzle, vertical major axis
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Fig. 5.10 ( contd. ) Experimental contours, trapezoidal nozzle
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Fig. 5.11 lnstamaneous images ofelhanol-seeded air injection into still air at x/h=0.75
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Fig. 5.12 Instantaneous images of helium injection into still air at x/h=0.75
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Fig. 5.13 Instantaneous images of ethanol-seeded air injection into still air at x/h=3.9
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Fig. 5.14 Instantaneous side-view images of ethanol-seeded air jet only, no main flow
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Fig. 5.15 Instantaneous side-view images of ethanol-seeded air jet
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Fig. 5.16 Instantaneous side-view images of ethanol-seeded helium jet
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Fig. 5.18 Instantaneous transverse images of ethanol-seeded air injection at x/h=0.75
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Fig. 5.20 Instantaneous transverse images of ethanol-seeded air injection at x/h=7.
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Fig. 5.21 Instantaneous transverse images of ethanol-seeded air injection at x/h=lO.
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Fig. 5.22 Instantaneous transverse images of ethanol-seeded helium injection at x/h=0.75
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Fig. 5.23 Instantaneous transverse images of ethanol-seeded helium injection at x/h=3.9
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Fig. 5.24 Instantaneous transverse images of ethanol-seeded helium injection at x/h=7.
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Fig. 5.25 Instantaneous transverse images of ethanol-seeded helium injection at x/h=10.
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Fig. 5.27 Composite transverse images of ethanol-seeded air injection at x/h--0.75
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Fig. 5.28 Composite transverse images of ethanol-seeded air injection at x/h=3.9
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Fig. 5.29 Composite transverse images of ethanol-seeded air injection at x/h=7.
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Fig. 5.30 Composite transverse images of ethanol-seeded air injection at x/h=10.



i/ :7_
/;i i_!/i

167

j4'

+1
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Fig. 5.32 Composite transverse images of ethanol-seeded helium injection at x/h=3.9
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Fig. 5.33 Composite transverse images of ethanol-seeded helium injection at x/h=7.
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Fig. 5.34 Composite transverse images of ethanol-seeded helium injection at x/h=10.
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Fig. 5.36 Numerical simulation data of the main flow only in the symmetry plane
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Fig. 5.39 Numerical simulation data of the main flow only at x/h = 3.9
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Fig. 5.43 Numerical simulation data of the main flow and air injection in the symmetry plane
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Fig. 5.45 Numerical simulation data of the main flow and air injection at x/h = 0.75
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Fig. 5.48 Numerical simulation data of the main flow and air injection at x/h = 10.
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Fig. 5.50 Numerical simulation data of the main flow and helium injection in the symmetry plane
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Fig. 5.51 Numerical simulation data of the main flow and helium injection at x/h=O.
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Fig. 5.52 Numerical simulation data of the main flow and helium injection at x/h =0.75
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Fig. 5.53 Numerical simulation data of the main flow and helium injection at x/h=3.9
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Fig. 5.54 Numerical simulation data of the main flow and helium injection at x/h = 7.
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A comparison between experimental and numerical simulations data
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Fig. 5.61 Decay of injectant's mass-fraction from numerical simulations
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Fig. 5.63 Jet penetration
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Chapter 6

.CONCLUSIONS AND

RECOMMENDATIONS

6.1 Summary

This study addressed the interaction between wall mounted swept-ramp fuel

injector and injector nozzle configurations in a Mach two supersonic flow. The injector

nozzles were designed to enable a constructive coupling between the injectant flow

and the vortical flow generated by the ramp. Short combustor residence time, a

requirement for fuel injection nearly-parallel to the main flow in the combustor, and

an overall sensitivity of the vehicle performance to the propulsion system motivated

the investigation. It follows previous studies on preconditioning free jet flows, and on

contoured wall injectors based on the swept-ramp configuration. Injector performance

was evaluated in terms of mixing, losses, and jet penetration. The investigation

techniques included :

1. A planar Mie scattering technique for direct visualization of the mixed fluid

between the supersonic main flow and the supersonic jet. This passive scalar

method gives clear identification of the jet/mainstream interface in each of the
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four visualized cross planes and in the side views. The method is simple and

safe to use.

2. An image processing method which allows extraction of quantitatve information

from the visualization images. This information, which is based on geometric

properties - area, perimeter, compactness, and centroid - is used to characterize

mixing and penetration and to compare the different injector inserts.

3. Twelve rake-mounted probes for flow field survey : four pitot pressure probes,

four cone static pressure probes, and four total temperature probes. Given

the measurements from these twelve probes, Mach number, density, and static

temperatures were determined.

4. A three-dimensional Navier-Stokes code for solving the complex, three-dimensional

flow field. Good agreement was observed between the experimental data and

the calculations. The numerical simulation results complemented and clarified

the experimental findings.

6.2 Conclusions

The following conclusions are supported by both experimental and computational

results.

1. Six different nozzle inserts ( nine configurations ) were tested, and the results

indicate that there is a coupling effect between the preconditioned jet flow and

the vortical flow generated by the ramp. This coupling effect enhanced the near-

field mixing. All the nozzle inserts demonstrated a better mixing performance

relative to the baseline configuration ( the circular nozzle insert ), showing that
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the coupling effect does enhance the mixing.

2. The major stirring occurs in the vicinity of the ramp base, 5 < 3.9 ( x/d < 8.8 ),

where the flow is dominated by the strong vortical flow field generated by the

swept-ramp. Well downstream of the ramp base, 5 > 7 ( x/d > 16 ), the quasi-

axisymmetric flow pattern indicates a "loss of memory" of the near-field stirring.

In this region, the flow appears to be controlled by small-scale turbulence. The

transition between the vortex-driven mixing in the near-field to small-scale mix-

ing in the far-field occurs in the region 8.8 < x/d < 16, a behavior observed in

other injection schemes too [ e.g. normal injection ].

3. Only minor differences were noticed among the various fuel nozzles, indicating

<
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that the injectant mixing well downstream of the injectors ( 5 _> 7 ) is nearly

independent of fuel jet geometry, injectant molecular weight, and shear level or

initial convective Mach number.

4. Side views of the jets in the vicinity of the ramp base suggest some streamwise

large scale organization.

5. The mixing performance and the losses are mainly determined by the ramp, the

injector geometry having little effect on total pressure loss.

6. The injectant penetrates the main flow at an average angle that equals the

initial injection angle ( 10° ), suggesting that the penetration can be controlled

by changing the injection angle.

7. Even though the differences were minor, at _ = 10 the jet from the nozzle with

the vortex generators in cross orientation shows the largest perimeter length
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together with the largest area and the largest compactness factor, indicating

the best mixing characteristics in comparison with the other inserts.

8. Due to the increased lateral spreading, the tapered-slot nozzle with the vertical

slot orientation, could not be accurately characterized because it spread out

of the field of view. However, this nozzle appears to have a significant mixing

potential. The jet from the tapered-slot nozzle with vertical slot throat spread

laterally, and was captured by the two vortices generated by the ramp. These

vortices further stretch the jet sidewise, almost splitting it into two separate

jets. This behavior improves the near-field stirring by increasing the interface

between the jet and the main flow.

9. The tapered-slot nozzle, together with the nozzle with vortex generators, are

the two candidates recommended for further research.

To summarize, the main flow appears to be the dominant factor in this configura-

tion, the coupling effect between the main flow and the preconditioned jet flow being

weak, but showing some potential for enhancing the near-field mixing. The injector

inner geometry proved to have secondary effects on the performance of the injection

scheme. Therefore, conditioning of the main flow will have the highest impact on the

combustor's performance, causing high losses. In order to keep the losses low, condi-

tioning of the fuel should be used. Conditioning of the fuel and the coupling effect

between the main flow and the fuel flow could enhance the near-field mixing, although

the adverse pressure gradient in the combustor may alter the far-field mixing.



• _i( :j :

):iii_iil_

!::i/:%

ii _ .

206

6.3 Recommendations and Suggestions for

Further Work

This section presents recommendations and suggestions for future work based

on both the limited scope of the current tests and the sparse database available

from other investigations. The recommendations are based largely on knowledge

derived from the time-mean investigation, performed with spatial resolution much

larger than that required to determine molecular-scale mixing. As already mentioned,

an important design parameter of the combustor is the length required for complete

mixing of air and fuel at the molecular level. Mixing length is significant because

the specific impulse produced by the combustor decreases and the scramjet engine

installed weight increases as the distance for complete mixing increases. Because

rapid and efficient mixing are essential for acceptable scramjet performance, improved

mixing augmentation should be persued.

Because the vortical-flow field generated by the ramp is responsible for the main

stirring in the near-field, jet mixing should be initiated in the shortest possible length.

In the present study, a subsonic bubble was generated by the ramp base. The jet

discharged into this bubble which isolated the jet from interacting with the vortical

flow field. Only at 5 _ 1.5 does the jet start to interact with the surrounding flow.

Reducing the base area, by making the jet exit area almost equal to the base area, will

reduce this bubble resulting in a faster interaction between the jet and the surrounding

flOW.

Two injector inserts emerged as deserving further study : the insert with vortex

generators in cross orientation and the tapered-slot insert with the vertical slot throat.

The investigated nozzle with vortex generators had four rectangular tabs. The vortex
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generator tab apparently acts as a "winglet" and produces a pair of trailing vortices

which have the same sense of rotation as the trailing vortices originating from the

sides of a wing. In order to increase the strength of these vortices, different shapes and

sizes of tabs should be investigated, most likely to be in the form of delta wing with

the base of the triangle attached to the nozzle circumference, and the apex leaning

downstream or upstream ( see Fig. 6.1a ). The upstream leaning apex will generate

vortices of opposite sign to the ones generated by the downstream leaning apex, and

also will cause an outward bulge in the jet cross section instead an inward indentation,

like in the downstream case. Apparently, the shape of the cross-section of the jet, and

the vorticity distribution within the injectant can be controlled by a proper number,

shape, angle of attack, and size of the tabs. The jet should be distorted in such a

manner that it would be captured by the pair of ramp-generated vortices very close

to the injection port.

For the tapered-slot nozzle, different aspect ratios of the slot should be inves-

tigated to ensure the most favorable interaction between the jet and the vortical

flow field. The most favorable interaction would be the splitting of the jet into two

separate smaller jets immediately downstream of the injection port. Based on the

conclusion that the injectant should be captured and split by the pair of vortices in

order to improve the near-field stirring, an alternate design emerges. In this design,

two separate jets would be injected at the ramp base as seen in Fig. 6.lb. They can

be slightly inclined sidewise too, to improve the transverse penetration towards the

ramp-generated vortices. Each injectant could be preconditioned by applying swirl

of the same rotation as the ramp-generated vortices. This treatment will strengthen

the axial vorticity in the flow field improving the near-field stirring.

There are also practical difficulties associated with manufacturing and operating
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injectors in extremely high enthalpy flows such as within a scramjet combustor. From

the three inserts mentioned above, the tapered-slot nozzle is the easiest to manufac-

ture. From the operational point of view the nozzle with vortex generators is the

worst because its performance depends on tab geometry, the effectiveness of which is

questionable, over long periods of time in such a harsh environment.

The influence of the boundary layer thickness and the turbulence intensity remain

unresolved as it is extremely difficult to make such measurements in compressible

flows with adequate spatial resolution and accuracy. It is felt that further studies are

required to evaluate these two effects on the mixing performance.

Z

6.4 Closure

The present study demonstrated that there is a coupling effect between the pre-

conditioned jet flow and the vortical flow generated by the ramp, the preconditioning

of the fuel jet having secondary effect on the global mixing performance. This cou-

pling effect, and the consequent mixing can be enhanced by properly designed fuel

injectors.
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